Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jun 15;348(Pt 3):667–673.

Activity of phosphatidylinositol transfer protein is sensitive to ethanol and membrane curvature.

H Komatsu 1, B Bouma 1, K W Wirtz 1, T F Taraschi 1, N Janes 1
PMCID: PMC1221111  PMID: 10840000

Abstract

Phosphatidylinositol transfer protein (PITP) is critical for many cellular signalling and trafficking events that are influenced by ethanol. The influence of ethanol and membrane curvature on the activity of recombinant mouse PITP-alpha in vitro is evaluated by monitoring the transfer of phosphatidylinositol (PtdIns) from rat hepatic microsomes to unilamellar vesicles. Acute exposure to pharmacological levels of ethanol enhanced the function of PITP. Chloroform shared a similar ability to enhance function when both drug concentrations were normalized to their respective octanol/water partition coefficients, indicating that the effect is not unique to ethanol and might be common to hydrophobic solutes. Neither the PITP activity nor its ethanol enhancement was altered by using thermally pretreated (denatured) or protease-treated microsomes, indicating that the native microsomal protein structure was unlikely to be a determinant of transfer. Kinetic analyses indicated that ethanol acted by increasing the PITP-mediated flux of PtdIns from both microsomal and liposomal surfaces. The activity of PITP was strongly dependent on the lipid structure, with a steep dependence on the expressed curvature of the membrane. Activity was greatest for small, highly curved sonicated vesicles and decreased markedly for large, locally planar unilamellar vesicles. Ethanol enhanced PITP-mediated PtdIns transfer to all vesicles, but its effect was much smaller than the enhancement due to curvature, which is consistent with ethanol's comparatively modest ability to perturb membrane lipids. The ethanol efficacy observed is as pronounced as any previously described lipid-mediated ethanol action. In addition, these observations raise the possibility that PITP specifically delivers PtdIns to metabolically active membrane domains of convex curvature and/or low surface densities of lipid.

Full Text

The Full Text of this article is available as a PDF (141.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beschiaschvili G., Seelig J. Peptide binding to lipid bilayers. Nonclassical hydrophobic effect and membrane-induced pK shifts. Biochemistry. 1992 Oct 20;31(41):10044–10053. doi: 10.1021/bi00156a026. [DOI] [PubMed] [Google Scholar]
  2. Channareddy S., Jose S. S., Eryomin V. A., Rubin E., Taraschi T. F., Janes N. Saturable ethanol binding in rat liver microsomes. J Biol Chem. 1996 Jul 26;271(30):17625–17628. doi: 10.1074/jbc.271.30.17625. [DOI] [PubMed] [Google Scholar]
  3. Cunningham E., Thomas G. M., Ball A., Hiles I., Cockcroft S. Phosphatidylinositol transfer protein dictates the rate of inositol trisphosphate production by promoting the synthesis of PIP2. Curr Biol. 1995 Jul 1;5(7):775–783. doi: 10.1016/s0960-9822(95)00154-0. [DOI] [PubMed] [Google Scholar]
  4. Currie R. A., MacLeod B. M., Downes C. P. The lipid transfer activity of phosphatidylinositol transfer protein is sufficient to account for enhanced phospholipase C activity in turkey erythrocyte ghosts. Curr Biol. 1997 Mar 1;7(3):184–190. doi: 10.1016/s0960-9822(97)70089-7. [DOI] [PubMed] [Google Scholar]
  5. Ellingson J. S., Janes N., Taraschi T. F., Rubin E. The effect of chronic ethanol consumption on the fatty acid composition of phosphatidylinositol in rat liver microsomes as determined by gas chromatography and 1H-NMR. Biochim Biophys Acta. 1991 Feb 25;1062(2):199–205. doi: 10.1016/0005-2736(91)90393-m. [DOI] [PubMed] [Google Scholar]
  6. Franks N. P., Lieb W. R. Do general anaesthetics act by competitive binding to specific receptors? Nature. 1984 Aug 16;310(5978):599–601. doi: 10.1038/310599a0. [DOI] [PubMed] [Google Scholar]
  7. Franks N. P., Lieb W. R. Molecular and cellular mechanisms of general anaesthesia. Nature. 1994 Feb 17;367(6464):607–614. doi: 10.1038/367607a0. [DOI] [PubMed] [Google Scholar]
  8. Geijtenbeek T. B., de Groot E., van Baal J., Brunink F., Westerman J., Snoek G. T., Wirtz K. W. Characterization of mouse phosphatidylinositol transfer protein expressed in Escherichia coli. Biochim Biophys Acta. 1994 Aug 4;1213(3):309–318. doi: 10.1016/0005-2760(94)00063-8. [DOI] [PubMed] [Google Scholar]
  9. Hansch C., Dunn W. J., 3rd Linear relationships between lipophilic character and biological activity of drugs. J Pharm Sci. 1972 Jan;61(1):1–19. doi: 10.1002/jps.2600610102. [DOI] [PubMed] [Google Scholar]
  10. Helmkamp G. M., Jr, Harvey M. S., Wirtz K. W., Van Deenen L. L. Phospholipid exchange between membranes. Purification of bovine brain proteins that preferentially catalyze the transfer of phosphatidylinositol. J Biol Chem. 1974 Oct 25;249(20):6382–6389. [PubMed] [Google Scholar]
  11. Helmkamp G. M., Jr Phosphatidylinositol transfer proteins: structure, catalytic activity, and physiological function. Chem Phys Lipids. 1985 Aug 30;38(1-2):3–16. doi: 10.1016/0009-3084(85)90053-2. [DOI] [PubMed] [Google Scholar]
  12. Higashi K., Hoek J. B. Ethanol causes desensitization of receptor-mediated phospholipase C activation in isolated hepatocytes. J Biol Chem. 1991 Feb 5;266(4):2178–2190. [PubMed] [Google Scholar]
  13. Higgins J. A., Hitchin B. W., Low M. G. Phosphatidylinositol-specific phospholipase C of Bacillus thuringiensis as a probe for the distribution of phosphatidylinositol in hepatocyte membranes. Biochem J. 1989 May 1;259(3):913–916. doi: 10.1042/bj2590913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoek J. B., Rubin E. Alcohol and membrane-associated signal transduction. Alcohol Alcohol. 1990;25(2-3):143–156. doi: 10.1093/oxfordjournals.alcalc.a044989. [DOI] [PubMed] [Google Scholar]
  15. Hoek J. B., Thomas A. P., Rooney T. A., Higashi K., Rubin E. Ethanol and signal transduction in the liver. FASEB J. 1992 Apr;6(7):2386–2396. [PubMed] [Google Scholar]
  16. Hübner S., Couvillon A. D., Käs J. A., Bankaitis V. A., Vegners R., Carpenter C. L., Janmey P. A. Enhancement of phosphoinositide 3-kinase (PI 3-kinase) activity by membrane curvature and inositol-phospholipid-binding peptides. Eur J Biochem. 1998 Dec 1;258(2):846–853. doi: 10.1046/j.1432-1327.1998.2580846.x. [DOI] [PubMed] [Google Scholar]
  17. Jones S. M., Alb J. G., Jr, Phillips S. E., Bankaitis V. A., Howell K. E. A phosphatidylinositol 3-kinase and phosphatidylinositol transfer protein act synergistically in formation of constitutive transport vesicles from the trans-Golgi network. J Biol Chem. 1998 Apr 24;273(17):10349–10354. doi: 10.1074/jbc.273.17.10349. [DOI] [PubMed] [Google Scholar]
  18. Kamath S. A., Rubin E. Alterations in the rate of phospholipid exchange between cell membranes. Lab Invest. 1974 Apr;30(4):500–504. [PubMed] [Google Scholar]
  19. Low M. G., Zilversmit D. B. Phosphatidylinositol distribution and translocation in sonicated vesicles. A study with exchange protein and phospholipase C. Biochim Biophys Acta. 1980 Feb 28;596(2):223–234. doi: 10.1016/0005-2736(80)90357-0. [DOI] [PubMed] [Google Scholar]
  20. Mayer L. D., Hope M. J., Cullis P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986 Jun 13;858(1):161–168. doi: 10.1016/0005-2736(86)90302-0. [DOI] [PubMed] [Google Scholar]
  21. Mitchell D. C., Lawrence J. T., Litman B. J. Primary alcohols modulate the activation of the G protein-coupled receptor rhodopsin by a lipid-mediated mechanism. J Biol Chem. 1996 Aug 9;271(32):19033–19036. doi: 10.1074/jbc.271.32.19033. [DOI] [PubMed] [Google Scholar]
  22. Ohashi M., Jan de Vries K., Frank R., Snoek G., Bankaitis V., Wirtz K., Huttner W. B. A role for phosphatidylinositol transfer protein in secretory vesicle formation. Nature. 1995 Oct 12;377(6549):544–547. doi: 10.1038/377544a0. [DOI] [PubMed] [Google Scholar]
  23. Pflugmacher D., Sandermann H., Jr The lipid/protein interface as a target site for general anesthetics: a multiple-site kinetic analysis of synaptosomal Ca2+-ATPase. Biochim Biophys Acta. 1998 Dec 9;1415(1):174–180. doi: 10.1016/s0005-2736(98)00187-4. [DOI] [PubMed] [Google Scholar]
  24. Rubin R., Hoek J. B. Alcohol-induced stimulation of phospholipase C in human platelets requires G-protein activation. Biochem J. 1988 Aug 15;254(1):147–153. doi: 10.1042/bj2540147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rubin R., Thomas A. P., Hoek J. B. Ethanol does not stimulate guanine nucleotide-induced activation of phospholipase C in permeabilized hepatocytes. Arch Biochem Biophys. 1987 Jul;256(1):29–38. doi: 10.1016/0003-9861(87)90422-x. [DOI] [PubMed] [Google Scholar]
  26. Safinya CR, Sirota EB, Roux D, Smith GS. Universality in interacting membranes: The effect of cosurfactants on the interfacial rigidity. Phys Rev Lett. 1989 Mar 6;62(10):1134–1137. doi: 10.1103/PhysRevLett.62.1134. [DOI] [PubMed] [Google Scholar]
  27. Sha B., Phillips S. E., Bankaitis V. A., Luo M. Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol-transfer protein. Nature. 1998 Jan 29;391(6666):506–510. doi: 10.1038/35179. [DOI] [PubMed] [Google Scholar]
  28. Slater S. J., Ho C., Taddeo F. J., Kelly M. B., Stubbs C. D. Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation, and ethanol. Biochemistry. 1993 Apr 13;32(14):3714–3721. doi: 10.1021/bi00065a025. [DOI] [PubMed] [Google Scholar]
  29. Snoek G. T., Berrie C. P., Geijtenbeek T. B., van der Helm H. A., Cadeé J. A., Iurisci C., Corda D., Wirtz K. W. Overexpression of phosphatidylinositol transfer protein alpha in NIH3T3 cells activates a phospholipase A. J Biol Chem. 1999 Dec 10;274(50):35393–35399. doi: 10.1074/jbc.274.50.35393. [DOI] [PubMed] [Google Scholar]
  30. Sze P. Y., Iqbal Z. Ethanol modulates [125I]calmodulin binding to synaptic plasma membranes from rat brain. J Pharmacol Exp Ther. 1994 Mar;268(3):1183–1189. [PubMed] [Google Scholar]
  31. Taraschi T. F., Ellingson J. S., Wu A., Zimmerman R., Rubin E. Phosphatidylinositol from ethanol-fed rats confers membrane tolerance to ethanol. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9398–9402. doi: 10.1073/pnas.83.24.9398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Taraschi T. F., Rubin E. Effects of ethanol on the chemical and structural properties of biologic membranes. Lab Invest. 1985 Feb;52(2):120–131. [PubMed] [Google Scholar]
  33. Thomas G. M., Cunningham E., Cockcroft S. Purification of phosphatidylinositol transfer protein from brain cytosol for reconstituting G-protein-regulated phosphoinositide-specific phospholipase C-beta isozymes. Methods Enzymol. 1994;238:168–181. doi: 10.1016/0076-6879(94)38015-5. [DOI] [PubMed] [Google Scholar]
  34. Tüscher O., Lorra C., Bouma B., Wirtz K. W., Huttner W. B. Cooperativity of phosphatidylinositol transfer protein and phospholipase D in secretory vesicle formation from the TGN--phosphoinositides as a common denominator? FEBS Lett. 1997 Dec 15;419(2-3):271–275. doi: 10.1016/s0014-5793(97)01471-3. [DOI] [PubMed] [Google Scholar]
  35. Victorov A. V., Janes N., Taraschi T. F., Hoek J. B. Packing constraints and electrostatic surface potentials determine transmembrane asymmetry of phosphatidylethanol. Biophys J. 1997 Jun;72(6):2588–2598. doi: 10.1016/S0006-3495(97)78902-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vierl U., Löbbecke L., Nagel N., Cevc G. Solute effects on the colloidal and phase behavior of lipid bilayer membranes: ethanol-dipalmitoylphosphatidylcholine mixtures. Biophys J. 1994 Sep;67(3):1067–1079. doi: 10.1016/S0006-3495(94)80572-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wirtz K. W. Phospholipid transfer proteins revisited. Biochem J. 1997 Jun 1;324(Pt 2):353–360. doi: 10.1042/bj3240353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wirtz K. W., Vriend G., Westerman J. Kinetic analysis of the interaction of the phosphatidylcholine exchange protein with unilamellar vesicels and multilamellar liposomes. Eur J Biochem. 1979 Feb 15;94(1):215–221. doi: 10.1111/j.1432-1033.1979.tb12888.x. [DOI] [PubMed] [Google Scholar]
  39. Yoshimura T., Welti R., Helmkamp G. M., Jr General kinetic model for protein-mediated phospholipid transfer between membranes. Arch Biochem Biophys. 1988 Nov 1;266(2):299–312. doi: 10.1016/0003-9861(88)90262-7. [DOI] [PubMed] [Google Scholar]
  40. van den Besselaar A. M., Helmkamp G. M., Jr, Wirtz K. W. Kinetic model of the protein-mediated phosphatidylcholine exchange between single bilayer liposomes. Biochemistry. 1975 May 6;14(9):1852–1858. doi: 10.1021/bi00680a008. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES