Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jul 1;349(Pt 1):27–34. doi: 10.1042/0264-6021:3490027

Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase.

A Montalvetti 1, J Peña-Díaz 1, R Hurtado 1, L M Ruiz-Pérez 1, D González-Pacanowska 1
PMCID: PMC1221116  PMID: 10861207

Abstract

In eukaryotes the enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyses the synthesis of mevalonic acid, a common precursor to all isoprenoid compounds. Here we report the isolation and overexpression of the gene coding for HMG-CoA reductase from Leishmania major. The protein from Leishmania lacks the membrane domain characteristic of eukaryotic cells but exhibits sequence similarity with eukaryotic reductases. Highly purified protein was achieved by ammonium sulphate precipitation followed by chromatography on hydroxyapatite. Kinetic parameters were determined for the protozoan reductase, obtaining K(m) values for the overall reaction of 40.3+/-5.8 microM for (R,S)-HMG-CoA and 81.4+/-5.3 microM for NADPH; V(max) was 33.55+/-1.8 units x mg(-1). Gel-filtration experiments suggested an apparent molecular mass of 184 kDa with subunits of 46 kDa. Finally, in order to achieve a better understanding of the role of this enzyme in trypanosomatids, the effect of possible regulators of isoprenoid biosynthesis in cultured promastigote cells was studied. Neither mevalonic acid nor serum sterols appear to modulate enzyme activity whereas incubation with lovastatin results in significant increases in the amount of reductase protein. Western- and Northern-blot analyses indicate that this activation is apparently performed via post-transcriptional control.

Full Text

The Full Text of this article is available as a PDF (228.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach T. J., Rogers D. H., Rudney H. Detergent-solubilization, purification, and characterization of membrane-bound 3-hydroxy-3-methylglutaryl-coenzyme A reductase from radish seedlings. Eur J Biochem. 1986 Jan 2;154(1):103–111. doi: 10.1111/j.1432-1033.1986.tb09364.x. [DOI] [PubMed] [Google Scholar]
  2. Beach M. J., Rodwell V. W. Cloning, sequencing, and overexpression of mvaA, which encodes Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Bacteriol. 1989 Jun;171(6):2994–3001. doi: 10.1128/jb.171.6.2994-3001.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Brown M. S., Faust J. R., Goldstein J. L., Kaneko I., Endo A. Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase. J Biol Chem. 1978 Feb 25;253(4):1121–1128. [PubMed] [Google Scholar]
  5. Brown M. S., Goldstein J. L. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res. 1980 Jul;21(5):505–517. [PubMed] [Google Scholar]
  6. Camacho A., Arrebola R., Peña-Diaz J., Ruiz-Pérez L. M., González-Pacanowska D. Description of a novel eukaryotic deoxyuridine 5'-triphosphate nucleotidohydrolase in Leishmania major. Biochem J. 1997 Jul 15;325(Pt 2):441–447. doi: 10.1042/bj3250441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coderre J. A., Beverley S. M., Schimke R. T., Santi D. V. Overproduction of a bifunctional thymidylate synthetase-dihydrofolate reductase and DNA amplification in methotrexate-resistant Leishmania tropica. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2132–2136. doi: 10.1073/pnas.80.8.2132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Concepcion J. L., Gonzalez-Pacanowska D., Urbina J. A. 3-Hydroxy-3-methyl-glutaryl-CoA reductase in Trypanosoma (Schizotrypanum) cruzi: subcellular localization and kinetic properties. Arch Biochem Biophys. 1998 Apr 1;352(1):114–120. doi: 10.1006/abbi.1998.0577. [DOI] [PubMed] [Google Scholar]
  9. Coppens I., Bastin P., Levade T., Courtoy P. J. Activity, pharmacological inhibition and biological regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Trypanosoma brucei. Mol Biochem Parasitol. 1995 Jan;69(1):29–40. doi: 10.1016/0166-6851(94)00192-p. [DOI] [PubMed] [Google Scholar]
  10. Correll C. C., Edwards P. A. Mevalonic acid-dependent degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in vivo and in vitro. J Biol Chem. 1994 Jan 7;269(1):633–638. [PubMed] [Google Scholar]
  11. Frimpong K., Darnay B. G., Rodwell V. W. Syrian hamster 3-hydroxy-3-methylglutaryl-coenzyme A reductase expressed in Escherichia coli: production of homogeneous protein. Protein Expr Purif. 1993 Aug;4(4):337–344. doi: 10.1006/prep.1993.1044. [DOI] [PubMed] [Google Scholar]
  12. Garvey E. P., Santi D. V. Stable amplified DNA in drug-resistant Leishmania exists as extrachromosomal circles. Science. 1986 Aug 1;233(4763):535–540. doi: 10.1126/science.3726545. [DOI] [PubMed] [Google Scholar]
  13. Gil G., Faust J. R., Chin D. J., Goldstein J. L., Brown M. S. Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme. Cell. 1985 May;41(1):249–258. doi: 10.1016/0092-8674(85)90078-9. [DOI] [PubMed] [Google Scholar]
  14. Goad L. J., Holz G. G., Jr, Beach D. H. Sterols of Leishmania species. Implications for biosynthesis. Mol Biochem Parasitol. 1984 Feb;10(2):161–170. doi: 10.1016/0166-6851(84)90004-5. [DOI] [PubMed] [Google Scholar]
  15. Goad L. J., Holz G. G., Jr, Beach D. H. Sterols of ketoconazole-inhibited Leishmania mexicana mexicana promastigotes. Mol Biochem Parasitol. 1985 Jun;15(3):257–279. doi: 10.1016/0166-6851(85)90089-1. [DOI] [PubMed] [Google Scholar]
  16. Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
  17. Haughan P. A., Chance M. L., Goad L. J. Synergism in vitro of lovastatin and miconazole as anti-leishmanial agents. Biochem Pharmacol. 1992 Dec 1;44(11):2199–2206. doi: 10.1016/0006-2952(92)90347-l. [DOI] [PubMed] [Google Scholar]
  18. Istvan E. S., Palnitkar M., Buchanan S. K., Deisenhofer J. Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis. EMBO J. 2000 Mar 1;19(5):819–830. doi: 10.1093/emboj/19.5.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kirsten E. S., Watson J. A. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in hepatoma tissue culture cells by serum lipoproteins. J Biol Chem. 1974 Oct 10;249(19):6104–6109. [PubMed] [Google Scholar]
  20. Korn E. D., Von Brand T., Tobie E. J. The sterols of Trypanosoma cruzi and Crithidia fasciculata. Comp Biochem Physiol. 1969 Aug 15;30(4):601–610. doi: 10.1016/0010-406x(69)92137-9. [DOI] [PubMed] [Google Scholar]
  21. Mayer R. J., Debouck C., Metcalf B. W. Purification and properties of the catalytic domain of human 3-hydroxy-3-methylglutaryl-CoA reductase expressed in Escherichia coli. Arch Biochem Biophys. 1988 Nov 15;267(1):110–118. doi: 10.1016/0003-9861(88)90014-8. [DOI] [PubMed] [Google Scholar]
  22. Nakanishi M., Goldstein J. L., Brown M. S. Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mevalonate-derived product inhibits translation of mRNA and accelerates degradation of enzyme. J Biol Chem. 1988 Jun 25;263(18):8929–8937. [PubMed] [Google Scholar]
  23. Olender E. H., Simon R. D. The intracellular targeting and membrane topology of 3-hydroxy-3-methylglutaryl-CoA reductase. J Biol Chem. 1992 Feb 25;267(6):4223–4235. [PubMed] [Google Scholar]
  24. Olender E. H., Simon R. D. The intracellular targeting and membrane topology of 3-hydroxy-3-methylglutaryl-CoA reductase. J Biol Chem. 1992 Feb 25;267(6):4223–4235. [PubMed] [Google Scholar]
  25. Peña-Díaz J., Montalvetti A., Camacho A., Gallego C., Ruiz-Perez L. M., Gonzalez-Pacanowska D. A soluble 3-hydroxy-3-methylglutaryl-CoA reductase in the protozoan Trypanosoma cruzi. Biochem J. 1997 Jun 1;324(Pt 2):619–626. doi: 10.1042/bj3240619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ryder N. S. Mechanism of action and biochemical selectivity of allylamine antimycotic agents. Ann N Y Acad Sci. 1988;544:208–220. doi: 10.1111/j.1749-6632.1988.tb40405.x. [DOI] [PubMed] [Google Scholar]
  27. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  28. Takahashi S., Kuzuyama T., Seto H. Purification, characterization, and cloning of a eubacterial 3-hydroxy-3-methylglutaryl coenzyme A reductase, a key enzyme involved in biosynthesis of terpenoids. J Bacteriol. 1999 Feb;181(4):1256–1263. doi: 10.1128/jb.181.4.1256-1263.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Troke P. F., Marriott M. S., Richardson K., Tarbit M. H. In vitro potency and in vivo activity of azoles. Ann N Y Acad Sci. 1988;544:284–293. doi: 10.1111/j.1749-6632.1988.tb40414.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES