Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jul 1;349(Pt 1):85–90. doi: 10.1042/0264-6021:3490085

Redox equilibria of manganese peroxidase from Phanerochaetes chrysosporium: functional role of residues on the proximal side of the haem pocket.

R Santucci 1, C Bongiovanni 1, S Marini 1, Del Conte R 1, M Tien 1, L Banci 1, M Coletta 1
PMCID: PMC1221123  PMID: 10861214

Abstract

Redox potentials of recombinant manganese peroxidase from Phanerochaetes chrysosporium have been measured by cyclic voltammetry as a function of pH, between pH 4.5 and pH 10.5. They display a bimodal behaviour (characterized by an 'alkaline' and an 'acid' transition), which indicates that (at least) two protonating groups change their pK(b) values upon reduction (and/or oxidation) of the iron atom in haem. Analogous measurements have been carried out on four site-directed mutants involving residues in close proximity to the proximal ligand, His(173), in order to investigate the role played by residues of the proximal haem pocket on the redox properties of this enzyme. Results obtained suggest that the protonation state of N(delta) of the proximal imidazole group is redox-linked and that it is crucial in regulating the 'alkaline' transition. On the other hand, none of the proximal mutants alters the 'acid' transition, suggesting that it is modulated by groups located in a different portion of the protein.

Full Text

The Full Text of this article is available as a PDF (150.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banci L., Bertini I., Capannoli C., Del Conte R., Tien M. Spectroscopic characterization of active mutants of manganese peroxidase: mutations on the proximal side affect calcium binding of the distal side. Biochemistry. 1999 Jul 27;38(30):9617–9625. doi: 10.1021/bi9825697. [DOI] [PubMed] [Google Scholar]
  2. Banci L., Bertini I., Turano P., Tien M., Kirk T. K. Proton NMR investigation into the basis for the relatively high redox potential of lignin peroxidase. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):6956–6960. doi: 10.1073/pnas.88.16.6956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Edwards S. L., Raag R., Wariishi H., Gold M. H., Poulos T. L. Crystal structure of lignin peroxidase. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):750–754. doi: 10.1073/pnas.90.2.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ferrer J. C., Turano P., Banci L., Bertini I., Morris I. K., Smith K. M., Smith M., Mauk A. G. Active site coordination chemistry of the cytochrome c peroxidase Asp235Ala variant: spectroscopic and functional characterization. Biochemistry. 1994 Jun 28;33(25):7819–7829. doi: 10.1021/bi00191a009. [DOI] [PubMed] [Google Scholar]
  5. Finzel B. C., Poulos T. L., Kraut J. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution. J Biol Chem. 1984 Nov 10;259(21):13027–13036. [PubMed] [Google Scholar]
  6. Gajhede M., Schuller D. J., Henriksen A., Smith A. T., Poulos T. L. Crystal structure of horseradish peroxidase C at 2.15 A resolution. Nat Struct Biol. 1997 Dec;4(12):1032–1038. doi: 10.1038/nsb1297-1032. [DOI] [PubMed] [Google Scholar]
  7. Glenn J. K., Akileswaran L., Gold M. H. Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys. 1986 Dec;251(2):688–696. doi: 10.1016/0003-9861(86)90378-4. [DOI] [PubMed] [Google Scholar]
  8. Glenn J. K., Gold M. H. Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys. 1985 Nov 1;242(2):329–341. doi: 10.1016/0003-9861(85)90217-6. [DOI] [PubMed] [Google Scholar]
  9. Goodin D. B., McRee D. E. The Asp-His-Fe triad of cytochrome c peroxidase controls the reduction potential, electronic structure, and coupling of the tryptophan free radical to the heme. Biochemistry. 1993 Apr 6;32(13):3313–3324. [PubMed] [Google Scholar]
  10. Kishi K., Hildebrand D. P., Kusters-van Someren M., Gettemy J., Mauk A. G., Gold M. H. Site-directed mutations at phenylalanine-190 of manganese peroxidase: effects on stability, function, and coordination. Biochemistry. 1997 Apr 8;36(14):4268–4277. doi: 10.1021/bi962627t. [DOI] [PubMed] [Google Scholar]
  11. Kuan I. C., Johnson K. A., Tien M. Kinetic analysis of manganese peroxidase. The reaction with manganese complexes. J Biol Chem. 1993 Sep 25;268(27):20064–20070. [PubMed] [Google Scholar]
  12. Millis C. D., Cai D. Y., Stankovich M. T., Tien M. Oxidation-reduction potentials and ionization states of extracellular peroxidases from the lignin-degrading fungus Phanerochaete chrysosporium. Biochemistry. 1989 Oct 17;28(21):8484–8489. doi: 10.1021/bi00447a032. [DOI] [PubMed] [Google Scholar]
  13. Petersen J. F., Kadziola A., Larsen S. Three-dimensional structure of a recombinant peroxidase from Coprinus cinereus at 2.6 A resolution. FEBS Lett. 1994 Feb 21;339(3):291–296. doi: 10.1016/0014-5793(94)80433-8. [DOI] [PubMed] [Google Scholar]
  14. Piontek K., Glumoff T., Winterhalter K. Low pH crystal structure of glycosylated lignin peroxidase from Phanerochaete chrysosporium at 2.5 A resolution. FEBS Lett. 1993 Jan 4;315(2):119–124. doi: 10.1016/0014-5793(93)81146-q. [DOI] [PubMed] [Google Scholar]
  15. Poulos T. L., Edwards S. L., Wariishi H., Gold M. H. Crystallographic refinement of lignin peroxidase at 2 A. J Biol Chem. 1993 Feb 25;268(6):4429–4440. doi: 10.2210/pdb1lga/pdb. [DOI] [PubMed] [Google Scholar]
  16. Poulos T. L., Kraut J. A hypothetical model of the cytochrome c peroxidase . cytochrome c electron transfer complex. J Biol Chem. 1980 Nov 10;255(21):10322–10330. [PubMed] [Google Scholar]
  17. Santucci R., Ferri T., Morpurgo L., Savini I., Avigliano L. Unmediated heterogeneous electron transfer reaction of ascorbate oxidase and laccase at a gold electrode. Biochem J. 1998 Jun 15;332(Pt 3):611–615. doi: 10.1042/bj3320611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sundaramoorthy M., Kishi K., Gold M. H., Poulos T. L. Crystal structures of substrate binding site mutants of manganese peroxidase. J Biol Chem. 1997 Jul 11;272(28):17574–17580. doi: 10.1074/jbc.272.28.17574. [DOI] [PubMed] [Google Scholar]
  19. Sundaramoorthy M., Kishi K., Gold M. H., Poulos T. L. The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J Biol Chem. 1994 Dec 30;269(52):32759–32767. [PubMed] [Google Scholar]
  20. Wang J. M., Mauro M., Edwards S. L., Oatley S. J., Fishel L. A., Ashford V. A., Xuong N. H., Kraut J. X-ray structures of recombinant yeast cytochrome c peroxidase and three heme-cleft mutants prepared by site-directed mutagenesis. Biochemistry. 1990 Aug 7;29(31):7160–7173. doi: 10.1021/bi00483a003. [DOI] [PubMed] [Google Scholar]
  21. Wariishi H., Akileswaran L., Gold M. H. Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry. 1988 Jul 12;27(14):5365–5370. doi: 10.1021/bi00414a061. [DOI] [PubMed] [Google Scholar]
  22. Wariishi H., Dunford H. B., MacDonald I. D., Gold M. H. Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Transient state kinetics and reaction mechanism. J Biol Chem. 1989 Feb 25;264(6):3335–3340. [PubMed] [Google Scholar]
  23. Whitwam R. E., Koduri R. S., Natan M., Tien M. Role of axial ligands in the reactivity of Mn peroxidase from Phanerochaete chrysosporium. Biochemistry. 1999 Jul 27;38(30):9608–9616. doi: 10.1021/bi982568e. [DOI] [PubMed] [Google Scholar]
  24. Whitwam R., Tien M. Heterologous expression and reconstitution of fungal Mn peroxidase. Arch Biochem Biophys. 1996 Sep 15;333(2):439–446. doi: 10.1006/abbi.1996.0413. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES