Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jul 1;349(Pt 1):113–117. doi: 10.1042/0264-6021:3490113

p40(phox) Participates in the activation of NADPH oxidase by increasing the affinity of p47(phox) for flavocytochrome b(558).

A R Cross 1
PMCID: PMC1221127  PMID: 10861218

Abstract

NADPH oxidase is one of the major components of the innate immune system and is used by phagocytes to generate microbicidal reactive oxygen species. Activation of the enzyme requires the participation of a minimum of five proteins, p22(phox), gp91(phox) (together forming flavocytochrome b(558)), p47(phox), p67(phox) and the GTP-binding protein, Rac2. A sixth protein, p40(phox), has been implicated in the control of the activity of NADPH oxidase principally based on its sequence homology to, and physical association with, other phox components, and also the observation that it is phosphorylated during neutrophil activation. However, to date its role in regulating the activity of the enzyme has remained obscure, with evidence for both positive and negative influences on oxidase activity having being reported. Data are presented here using the cell-free system for NADPH oxidase activation that shows that p40(phox) can function to promote oxidase activation by increasing the affinity of p47(phox) for the enzyme approx. 3-fold.

Full Text

The Full Text of this article is available as a PDF (112.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bouin A. P., Grandvaux N., Vignais P. V., Fuchs A. p40(phox) is phosphorylated on threonine 154 and serine 315 during activation of the phagocyte NADPH oxidase. Implication of a protein kinase c-type kinase in the phosphorylation process. J Biol Chem. 1998 Nov 13;273(46):30097–30103. doi: 10.1074/jbc.273.46.30097. [DOI] [PubMed] [Google Scholar]
  2. Cross A. R., Erickson R. W., Curnutte J. T. Simultaneous presence of p47(phox) and flavocytochrome b-245 are required for the activation of NADPH oxidase by anionic amphiphiles. Evidence for an intermediate state of oxidase activation. J Biol Chem. 1999 May 28;274(22):15519–15525. doi: 10.1074/jbc.274.22.15519. [DOI] [PubMed] [Google Scholar]
  3. Cross A. R., Erickson R. W., Curnutte J. T. The mechanism of activation of NADPH oxidase in the cell-free system: the activation process is primarily catalytic and not through the formation of a stoichiometric complex. Biochem J. 1999 Jul 15;341(Pt 2):251–255. [PMC free article] [PubMed] [Google Scholar]
  4. Cross A. R., Erickson R. W., Ellis B. A., Curnutte J. T. Spontaneous activation of NADPH oxidase in a cell-free system: unexpected multiple effects of magnesium ion concentrations. Biochem J. 1999 Feb 15;338(Pt 1):229–233. [PMC free article] [PubMed] [Google Scholar]
  5. Cross A. R., Higson F. K., Jones O. T., Harper A. M., Segal A. W. The enzymic reduction and kinetics of oxidation of cytochrome b-245 of neutrophils. Biochem J. 1982 May 15;204(2):479–485. doi: 10.1042/bj2040479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curnutte J. T., Kuver R., Babior B. M. Activation of the respiratory burst oxidase in a fully soluble system from human neutrophils. J Biol Chem. 1987 May 15;262(14):6450–6452. [PubMed] [Google Scholar]
  7. Dusi S., Donini M., Rossi F. Mechanisms of NADPH oxidase activation: translocation of p40phox, Rac1 and Rac2 from the cytosol to the membranes in human neutrophils lacking p47phox or p67phox. Biochem J. 1996 Mar 1;314(Pt 2):409–412. doi: 10.1042/bj3140409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. El Benna J., Dang P. M., Andrieu V., Vergnaud S., Dewas C., Cachia O., Fay M., Morel F., Chollet-Martin S., Hakim J. P40phox associates with the neutrophil Triton X-100-insoluble cytoskeletal fraction and PMA-activated membrane skeleton: a comparative study with P67phox and P47phox. J Leukoc Biol. 1999 Dec;66(6):1014–1020. doi: 10.1002/jlb.66.6.1014. [DOI] [PubMed] [Google Scholar]
  9. Freeman J. L., Lambeth J. D. NADPH oxidase activity is independent of p47phox in vitro. J Biol Chem. 1996 Sep 13;271(37):22578–22582. doi: 10.1074/jbc.271.37.22578. [DOI] [PubMed] [Google Scholar]
  10. Fuchs A., Bouin A. P., Rabilloud T., Vignais P. V. The 40-kDa component of the phagocyte NADPH oxidase (p40phox) is phosphorylated during activation in differentiated HL60 cells. Eur J Biochem. 1997 Oct 15;249(2):531–539. doi: 10.1111/j.1432-1033.1997.00531.x. [DOI] [PubMed] [Google Scholar]
  11. Fuchs A., Dagher M. C., Fauré J., Vignais P. V. Topological organization of the cytosolic activating complex of the superoxide-generating NADPH-oxidase. Pinpointing the sites of interaction between p47phoz, p67phox and p40phox using the two-hybrid system. Biochim Biophys Acta. 1996 Jun 5;1312(1):39–47. doi: 10.1016/0167-4889(96)00020-1. [DOI] [PubMed] [Google Scholar]
  12. Fuchs A., Dagher M. C., Vignais P. V. Mapping the domains of interaction of p40phox with both p47phox and p67phox of the neutrophil oxidase complex using the two-hybrid system. J Biol Chem. 1995 Mar 17;270(11):5695–5697. doi: 10.1074/jbc.270.11.5695. [DOI] [PubMed] [Google Scholar]
  13. Ito T., Nakamura R., Sumimoto H., Takeshige K., Sakaki Y. An SH3 domain-mediated interaction between the phagocyte NADPH oxidase factors p40phox and p47phox. FEBS Lett. 1996 May 6;385(3):229–232. doi: 10.1016/0014-5793(96)00387-0. [DOI] [PubMed] [Google Scholar]
  14. Koshkin V., Lotan O., Pick E. The cytosolic component p47(phox) is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production. J Biol Chem. 1996 Nov 29;271(48):30326–30329. doi: 10.1074/jbc.271.48.30326. [DOI] [PubMed] [Google Scholar]
  15. Nakamura R., Sumimoto H., Mizuki K., Hata K., Ago T., Kitajima S., Takeshige K., Sakaki Y., Ito T. The PC motif: a novel and evolutionarily conserved sequence involved in interaction between p40phox and p67phox, SH3 domain-containing cytosolic factors of the phagocyte NADPH oxidase. Eur J Biochem. 1998 Feb 1;251(3):583–589. doi: 10.1046/j.1432-1327.1998.2510583.x. [DOI] [PubMed] [Google Scholar]
  16. Nauseef W. M. The NADPH-dependent oxidase of phagocytes. Proc Assoc Am Physicians. 1999 Sep-Oct;111(5):373–382. doi: 10.1111/paa.1999.111.5.373. [DOI] [PubMed] [Google Scholar]
  17. Park H. S., Park J. W. Conformational changes of the leukocyte NADPH oxidase subunit p47(phox) during activation studied through its intrinsic fluorescence. Biochim Biophys Acta. 1998 Sep 8;1387(1-2):406–414. doi: 10.1016/s0167-4838(98)00152-6. [DOI] [PubMed] [Google Scholar]
  18. Park H. S., Park J. W. Fluorescent labeling of the leukocyte NADPH oxidase subunit p47(phox): evidence for amphiphile-induced conformational changes. Arch Biochem Biophys. 1998 Dec 15;360(2):165–172. doi: 10.1006/abbi.1998.0938. [DOI] [PubMed] [Google Scholar]
  19. Rinckel L. A., Faris S. L., Hitt N. D., Kleinberg M. E. Rac1 disrupts p67phox/p40phox binding: a novel role for Rac in NADPH oxidase activation. Biochem Biophys Res Commun. 1999 Sep 16;263(1):118–122. doi: 10.1006/bbrc.1999.1334. [DOI] [PubMed] [Google Scholar]
  20. Sathyamoorthy M., de Mendez I., Adams A. G., Leto T. L. p40(phox) down-regulates NADPH oxidase activity through interactions with its SH3 domain. J Biol Chem. 1997 Apr 4;272(14):9141–9146. doi: 10.1074/jbc.272.14.9141. [DOI] [PubMed] [Google Scholar]
  21. Someya A., Nagaoka I., Nunoi H., Yamashita T. Translocation of guinea pig p40-phox during activation of NADPH oxidase. Biochim Biophys Acta. 1996 Dec 18;1277(3):217–225. doi: 10.1016/s0005-2728(96)00099-0. [DOI] [PubMed] [Google Scholar]
  22. Someya A., Nagaoka I., Yamashita T. Purification of the 260 kDa cytosolic complex involved in the superoxide production of guinea pig neutrophils. FEBS Lett. 1993 Sep 13;330(2):215–218. doi: 10.1016/0014-5793(93)80276-z. [DOI] [PubMed] [Google Scholar]
  23. Swain S. D., Helgerson S. L., Davis A. R., Nelson L. K., Quinn M. T. Analysis of activation-induced conformational changes in p47phox using tryptophan fluorescence spectroscopy. J Biol Chem. 1997 Nov 21;272(47):29502–29510. doi: 10.1074/jbc.272.47.29502. [DOI] [PubMed] [Google Scholar]
  24. Tsunawaki S., Kagara S., Yoshikawa K., Yoshida L. S., Kuratsuji T., Namiki H. Involvement of p40phox in activation of phagocyte NADPH oxidase through association of its carboxyl-terminal, but not its amino-terminal, with p67phox. J Exp Med. 1996 Sep 1;184(3):893–902. doi: 10.1084/jem.184.3.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tsunawaki S., Mizunari H., Nagata M., Tatsuzawa O., Kuratsuji T. A novel cytosolic component, p40phox, of respiratory burst oxidase associates with p67phox and is absent in patients with chronic granulomatous disease who lack p67phox. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1378–1387. doi: 10.1006/bbrc.1994.1383. [DOI] [PubMed] [Google Scholar]
  26. Wientjes F. B., Hsuan J. J., Totty N. F., Segal A. W. p40phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domains. Biochem J. 1993 Dec 15;296(Pt 3):557–561. doi: 10.1042/bj2960557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wientjes F. B., Panayotou G., Reeves E., Segal A. W. Interactions between cytosolic components of the NADPH oxidase: p40phox interacts with both p67phox and p47phox. Biochem J. 1996 Aug 1;317(Pt 3):919–924. doi: 10.1042/bj3170919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yu L., Cross A. R., Zhen L., Dinauer M. C. Functional analysis of NADPH oxidase in granulocytic cells expressing a delta488-497 gp91(phox) deletion mutant. Blood. 1999 Oct 1;94(7):2497–2504. [PubMed] [Google Scholar]
  29. Yu L., Quinn M. T., Cross A. R., Dinauer M. C. Gp91(phox) is the heme binding subunit of the superoxide-generating NADPH oxidase. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7993–7998. doi: 10.1073/pnas.95.14.7993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES