Abstract
Shewanella frigidimarina NCIMB400 is a non-fermenting, facultative anaerobe from the gamma group of proteobacteria. When grown anaerobically this organism produces a wide variety of periplasmic c-type cytochromes, mostly of unknown function. We have purified a small, acidic, low-potential tetrahaem cytochrome with similarities to the cytochromes c(3) from sulphate-reducing bacteria. The N-terminal sequence was used to design PCR primers and the cctA gene encoding cytochrome c(3) was isolated and sequenced. The EPR spectrum of purified cytochrome c(3) indicates that all four haem irons are ligated by two histidine residues, a conclusion supported by the presence of eight histidine residues in the polypeptide sequence, each of which is conserved in a related cytochrome c(3) and in the cytochrome domains of flavocytochromes c(3). All four haems exhibit low midpoint redox potentials that range from -207 to -58 mV at pH 7; these values are not significantly influenced by pH changes. Shewanella cytochrome c(3) consists of a mere 86 amino acid residues with a predicted molecular mass of 11780 Da, including the four attached haem groups. This corresponds closely to the value of 11778 Da estimated by electrospray MS. To examine the function of this novel cytochrome c(3) we constructed a null mutant by gene disruption. S. frigidimarina lacking cytochrome c(3) grows well aerobically and its growth rate under anaerobiosis with a variety of electron acceptors is indistinguishable from that of the wild-type parent strain, except that respiration with Fe(III) as sole acceptor is severely, although not completely, impaired.
Full Text
The Full Text of this article is available as a PDF (171.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambler R. P. Sequence variability in bacterial cytochromes c. Biochim Biophys Acta. 1991 May 23;1058(1):42–47. doi: 10.1016/s0005-2728(05)80266-x. [DOI] [PubMed] [Google Scholar]
- Beliaev A. S., Saffarini D. A. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J Bacteriol. 1998 Dec;180(23):6292–6297. doi: 10.1128/jb.180.23.6292-6297.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobbin P. S., Butt J. N., Powell A. K., Reid G. A., Richardson D. J. Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400. Biochem J. 1999 Sep 1;342(Pt 2):439–448. [PMC free article] [PubMed] [Google Scholar]
- Gordon E. H., Pealing S. L., Chapman S. K., Ward F. B., Reid G. A. Physiological function and regulation of flavocytochrome c3, the soluble fumarate reductase from Shewanella putrefaciens NCIMB 400. Microbiology. 1998 Apr;144(Pt 4):937–945. doi: 10.1099/00221287-144-4-937. [DOI] [PubMed] [Google Scholar]
- Hayes J. D., Kerr L. A., Cronshaw A. D. Evidence that glutathione S-transferases B1B1 and B2B2 are the products of separate genes and that their expression in human liver is subject to inter-individual variation. Molecular relationships between the B1 and B2 subunits and other Alpha class glutathione S-transferases. Biochem J. 1989 Dec 1;264(2):437–445. doi: 10.1042/bj2640437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higuchi Y., Kusunoki M., Yasuoka N., Kakudo M., Yagi T. On cytochrome c3 folding. J Biochem. 1981 Dec;90(6):1715–1723. doi: 10.1093/oxfordjournals.jbchem.a133648. [DOI] [PubMed] [Google Scholar]
- Komine Y., Inokuchi H. Precise mapping of the rnpB gene encoding the RNA component of RNase P in Escherichia coli K-12. J Bacteriol. 1991 Mar;173(5):1813–1816. doi: 10.1128/jb.173.5.1813-1816.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leys D., Tsapin A. S., Nealson K. H., Meyer T. E., Cusanovich M. A., Van Beeumen J. J. Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1. Nat Struct Biol. 1999 Dec;6(12):1113–1117. doi: 10.1038/70051. [DOI] [PubMed] [Google Scholar]
- Loutfi M., Guerlesquin F., Bianco P., Haladjian J., Bruschi M. Comparative studies of polyhemic cytochromes c isolated from Desulfovibrio vulgaris (Hildenborough) and Desulfovibrio desulfuricans (Norway). Biochem Biophys Res Commun. 1989 Mar 15;159(2):670–676. doi: 10.1016/0006-291x(89)90047-8. [DOI] [PubMed] [Google Scholar]
- Mead D. A., Szczesna-Skorupa E., Kemper B. Single-stranded DNA 'blue' T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng. 1986 Oct-Nov;1(1):67–74. doi: 10.1093/protein/1.1.67. [DOI] [PubMed] [Google Scholar]
- Morris C. J., Black A. C., Pealing S. L., Manson F. D., Chapman S. K., Reid G. A., Gibson D. M., Ward F. B. Purification and properties of a novel cytochrome: flavocytochrome c from Shewanella putrefaciens. Biochem J. 1994 Sep 1;302(Pt 2):587–593. doi: 10.1042/bj3020587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris C. J., Gibson D. M., Ward F. B. Influence of respiratory substrate on the cytochrome content of Shewanella putrefaciens. FEMS Microbiol Lett. 1990 Jun 1;57(3):259–262. doi: 10.1016/0378-1097(90)90077-4. [DOI] [PubMed] [Google Scholar]
- Myers C. R., Myers J. M. Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J Bacteriol. 1997 Feb;179(4):1143–1152. doi: 10.1128/jb.179.4.1143-1152.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers C. R., Myers J. M. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol. 1992 Jun;174(11):3429–3438. doi: 10.1128/jb.174.11.3429-3438.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers C. R., Nealson K. H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science. 1988 Jun 3;240(4857):1319–1321. doi: 10.1126/science.240.4857.1319. [DOI] [PubMed] [Google Scholar]
- Nealson K. H., Saffarini D. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol. 1994;48:311–343. doi: 10.1146/annurev.mi.48.100194.001523. [DOI] [PubMed] [Google Scholar]
- Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997 Jan;10(1):1–6. doi: 10.1093/protein/10.1.1. [DOI] [PubMed] [Google Scholar]
- Omata T., Andriesse X., Hirano A. Identification and characterization of a gene cluster involved in nitrate transport in the cyanobacterium Synechococcus sp. PCC7942. Mol Gen Genet. 1993 Jan;236(2-3):193–202. doi: 10.1007/BF00277112. [DOI] [PubMed] [Google Scholar]
- Parales R. E., Harwood C. S. Construction and use of a new broad-host-range lacZ transcriptional fusion vector, pHRP309, for gram- bacteria. Gene. 1993 Oct 29;133(1):23–30. doi: 10.1016/0378-1119(93)90220-w. [DOI] [PubMed] [Google Scholar]
- Pealing S. L., Black A. C., Manson F. D., Ward F. B., Chapman S. K., Reid G. A. Sequence of the gene encoding flavocytochrome c from Shewanella putrefaciens: a tetraheme flavoenzyme that is a soluble fumarate reductase related to the membrane-bound enzymes from other bacteria. Biochemistry. 1992 Dec 8;31(48):12132–12140. doi: 10.1021/bi00163a023. [DOI] [PubMed] [Google Scholar]
- Pealing S. L., Cheesman M. R., Reid G. A., Thomson A. J., Ward F. B., Chapman S. K. Spectroscopic and kinetic studies of the tetraheme flavocytochrome c from Shewanella putrefaciens NCIMB400. Biochemistry. 1995 May 9;34(18):6153–6158. doi: 10.1021/bi00018a018. [DOI] [PubMed] [Google Scholar]
- Pealing S. L., Lysek D. A., Taylor P., Alexeev D., Reid G. A., Chapman S. K., Walkinshaw M. D. Crystallization and preliminary X-ray analysis of flavocytochrome c(3), the fumarate reductase from Shewanella frigidimarina. J Struct Biol. 1999 Aug;127(1):76–78. doi: 10.1006/jsbi.1999.4139. [DOI] [PubMed] [Google Scholar]
- Pollock W. B., Loutfi M., Bruschi M., Rapp-Giles B. J., Wall J. D., Voordouw G. Cloning, sequencing, and expression of the gene encoding the high-molecular-weight cytochrome c from Desulfovibrio vulgaris Hildenborough. J Bacteriol. 1991 Jan;173(1):220–228. doi: 10.1128/jb.173.1.220-228.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quandt J., Hynes M. F. Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene. 1993 May 15;127(1):15–21. doi: 10.1016/0378-1119(93)90611-6. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor P., Pealing S. L., Reid G. A., Chapman S. K., Walkinshaw M. D. Structural and mechanistic mapping of a unique fumarate reductase. Nat Struct Biol. 1999 Dec;6(12):1108–1112. doi: 10.1038/70045. [DOI] [PubMed] [Google Scholar]
- Tsapin A. I., Nealson K. H., Meyers T., Cusanovich M. A., Van Beuumen J., Crosby L. D., Feinberg B. A., Zhang C. Purification and properties of a low-redox-potential tetraheme cytochrome c3 from Shewanella putrefaciens. J Bacteriol. 1996 Nov;178(21):6386–6388. doi: 10.1128/jb.178.21.6386-6388.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner K. L., Doherty M. K., Heering H. A., Armstrong F. A., Reid G. A., Chapman S. K. Redox properties of flavocytochrome c3 from Shewanella frigidimarina NCIMB400. Biochemistry. 1999 Mar 16;38(11):3302–3309. doi: 10.1021/bi9826308. [DOI] [PubMed] [Google Scholar]
- Venkateswaran K., Moser D. P., Dollhopf M. E., Lies D. P., Saffarini D. A., MacGregor B. J., Ringelberg D. B., White D. C., Nishijima M., Sano H. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol. 1999 Apr;49(Pt 2):705–724. doi: 10.1099/00207713-49-2-705. [DOI] [PubMed] [Google Scholar]