Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jul 1;349(Pt 1):169–177. doi: 10.1042/0264-6021:3490169

The pepsin residue glycine-76 contributes to active-site loop flexibility and participates in catalysis.

M Okoniewska 1, T Tanaka 1, R Y Yada 1
PMCID: PMC1221134  PMID: 10861225

Abstract

Glycine residues are known to contribute to conformational flexibility of polypeptide chains, and have been found to contribute to flexibility of some loops associated with enzymic catalysis. A comparison of porcine pepsin in zymogen, mature and inhibited forms revealed that a loop (a flap), consisting of residues 71--80, located near the active site changed its position upon substrate binding. The loop residue, glycine-76, has been implicated in the catalytic process and thought to participate in a hydrogen-bond network aligning the substrate. This study investigated the role of glycine-76 using site-directed mutagenesis. Three mutants, G76A, G76V and G76S, were constructed to increase conformational restriction of a polypeptide chain. In addition, the serine mutant introduced a hydrogen-bonding potential at position 76 similar to that observed in human renin. All the mutants, regardless of amino acid size and polarity, had lower catalytic efficiency and activated more slowly than the wild-type enzyme. The slower activation process was associated directly with altered proteolytic activity. Consequently, it was proposed that a proteolytic cleavage represents a limiting step of the activation process. Lower catalytic efficiency of the mutants was explained as a decrease in the flap flexibility and, therefore, a different pattern of hydrogen bonds responsible for substrate alignment and flap conformation. The results demonstrated that flap flexibility is essential for efficient catalytic and activation processes.

Full Text

The Full Text of this article is available as a PDF (184.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abad-Zapatero C., Rydel T. J., Erickson J. Revised 2.3 A structure of porcine pepsin: evidence for a flexible subdomain. Proteins. 1990;8(1):62–81. doi: 10.1002/prot.340080109. [DOI] [PubMed] [Google Scholar]
  2. Andreeva N. S., Bochkarev A., Pechik I. A new way of looking at aspartic proteinase structures: a comparison of pepsin structure to other aspartic proteinases in the near active site region. Adv Exp Med Biol. 1995;362:19–32. doi: 10.1007/978-1-4615-1871-6_3. [DOI] [PubMed] [Google Scholar]
  3. Andreeva N. S., Zdanov A. S., Gustchina A. E., Fedorov A. A. Structure of ethanol-inhibited porcine pepsin at 2-A resolution and binding of the methyl ester of phenylalanyl-diiodotyrosine to the enzyme. J Biol Chem. 1984 Sep 25;259(18):11353–11365. [PubMed] [Google Scholar]
  4. Chang C. T., Wu C. S., Yang J. T. Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal Biochem. 1978 Nov;91(1):13–31. doi: 10.1016/0003-2697(78)90812-6. [DOI] [PubMed] [Google Scholar]
  5. Chen L., Erickson J. W., Rydel T. J., Park C. H., Neidhart D., Luly J., Abad-Zapatero C. Structure of a pepsin/renin inhibitor complex reveals a novel crystal packing induced by minor chemical alterations in the inhibitor. Acta Crystallogr B. 1992 Aug 1;48(Pt 4):476–488. doi: 10.1107/s0108768192001939. [DOI] [PubMed] [Google Scholar]
  6. Choe J. Y., Poland B. W., Fromm H. J., Honzatko R. B. Role of a dynamic loop in cation activation and allosteric regulation of recombinant porcine fructose-1,6-bisphosphatase. Biochemistry. 1998 Aug 18;37(33):11441–11450. doi: 10.1021/bi981112u. [DOI] [PubMed] [Google Scholar]
  7. Fetrow J. S. Omega loops: nonregular secondary structures significant in protein function and stability. FASEB J. 1995 Jun;9(9):708–717. [PubMed] [Google Scholar]
  8. Fry D. C., Kuby S. A., Mildvan A. S. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins. Proc Natl Acad Sci U S A. 1986 Feb;83(4):907–911. doi: 10.1073/pnas.83.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fujinaga M., Chernaia M. M., Tarasova N. I., Mosimann S. C., James M. N. Crystal structure of human pepsin and its complex with pepstatin. Protein Sci. 1995 May;4(5):960–972. doi: 10.1002/pro.5560040516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gekko K., Yamagami K., Kunori Y., Ichihara S., Kodama M., Iwakura M. Effects of point mutation in a flexible loop on the stability and enzymatic function of Escherichia coli dihydrofolate reductase. J Biochem. 1993 Jan;113(1):74–80. doi: 10.1093/oxfordjournals.jbchem.a124007. [DOI] [PubMed] [Google Scholar]
  11. Gerstein M., Chothia C. Analysis of protein loop closure. Two types of hinges produce one motion in lactate dehydrogenase. J Mol Biol. 1991 Jul 5;220(1):133–149. doi: 10.1016/0022-2836(91)90387-l. [DOI] [PubMed] [Google Scholar]
  12. Glick D. M., Hilt C. R., Mende-Mueller L. Conformational change that accompanies pepsinogen activation observed in real time by fluorescence energy transfer. Int J Pept Protein Res. 1991 Mar;37(3):230–235. doi: 10.1111/j.1399-3011.1991.tb00275.x. [DOI] [PubMed] [Google Scholar]
  13. Hartsuck J. A., Koelsch G., Remington S. J. The high-resolution crystal structure of porcine pepsinogen. Proteins. 1992 May;13(1):1–25. doi: 10.1002/prot.340130102. [DOI] [PubMed] [Google Scholar]
  14. Hoedemaeker F. J., van Eijsden R. R., Díaz C. L., de Pater B. S., Kijne J. W. Destabilization of pea lectin by substitution of a single amino acid in a surface loop. Plant Mol Biol. 1993 Sep;22(6):1039–1046. doi: 10.1007/BF00028976. [DOI] [PubMed] [Google Scholar]
  15. James M. N., Sielecki A. R. Stereochemical analysis of peptide bond hydrolysis catalyzed by the aspartic proteinase penicillopepsin. Biochemistry. 1985 Jul 2;24(14):3701–3713. doi: 10.1021/bi00335a045. [DOI] [PubMed] [Google Scholar]
  16. Kempner E. S. Movable lobes and flexible loops in proteins. Structural deformations that control biochemical activity. FEBS Lett. 1993 Jul 12;326(1-3):4–10. doi: 10.1016/0014-5793(93)81749-p. [DOI] [PubMed] [Google Scholar]
  17. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Larson E. M., Larimer F. W., Hartman F. C. Mechanistic insights provided by deletion of a flexible loop at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry. 1995 Apr 11;34(14):4531–4537. doi: 10.1021/bi00014a005. [DOI] [PubMed] [Google Scholar]
  19. Lee A. Y., Gulnik S. V., Erickson J. W. Conformational switching in an aspartic proteinase. Nat Struct Biol. 1998 Oct;5(10):866–871. doi: 10.1038/2306. [DOI] [PubMed] [Google Scholar]
  20. Leszczynski J. F., Rose G. D. Loops in globular proteins: a novel category of secondary structure. Science. 1986 Nov 14;234(4778):849–855. doi: 10.1126/science.3775366. [DOI] [PubMed] [Google Scholar]
  21. Lin X. L., Wong R. N., Tang J. Synthesis, purification, and active site mutagenesis of recombinant porcine pepsinogen. J Biol Chem. 1989 Mar 15;264(8):4482–4489. [PubMed] [Google Scholar]
  22. Lin Y., Fusek M., Lin X., Hartsuck J. A., Kezdy F. J., Tang J. pH dependence of kinetic parameters of pepsin, rhizopuspepsin, and their active-site hydrogen bond mutants. J Biol Chem. 1992 Sep 15;267(26):18413–18418. [PubMed] [Google Scholar]
  23. McPhie P. A turbidimetric milk-clotting assay for pepsin. Anal Biochem. 1976 May 21;73(1):258–261. doi: 10.1016/0003-2697(76)90166-4. [DOI] [PubMed] [Google Scholar]
  24. Miller G. P., Benkovic S. J. Deletion of a highly motional residue affects formation of the Michaelis complex for Escherichia coli dihydrofolate reductase. Biochemistry. 1998 May 5;37(18):6327–6335. doi: 10.1021/bi972922t. [DOI] [PubMed] [Google Scholar]
  25. Okoniewska M., Tanaka T., Yada R. Y. The role of the flap residue, threonine 77, in the activation and catalytic activity of pepsin A. Protein Eng. 1999 Jan;12(1):55–61. doi: 10.1093/protein/12.1.55. [DOI] [PubMed] [Google Scholar]
  26. Pearl L. H. The catalytic mechanism of aspartic proteinases. FEBS Lett. 1987 Apr 6;214(1):8–12. doi: 10.1016/0014-5793(87)80003-0. [DOI] [PubMed] [Google Scholar]
  27. Pompliano D. L., Peyman A., Knowles J. R. Stabilization of a reaction intermediate as a catalytic device: definition of the functional role of the flexible loop in triosephosphate isomerase. Biochemistry. 1990 Apr 3;29(13):3186–3194. doi: 10.1021/bi00465a005. [DOI] [PubMed] [Google Scholar]
  28. Rose G. D., Gierasch L. M., Smith J. A. Turns in peptides and proteins. Adv Protein Chem. 1985;37:1–109. doi: 10.1016/s0065-3233(08)60063-7. [DOI] [PubMed] [Google Scholar]
  29. Sakoda M., Hiromi K. Determination of the best-fit values of kinetic parameters of the Michaelis-Menten equation by the method of least squares with the Taylor expansion. J Biochem. 1976 Sep;80(3):547–555. doi: 10.1093/oxfordjournals.jbchem.a131310. [DOI] [PubMed] [Google Scholar]
  30. Sampson N. S., Knowles J. R. Segmental motion in catalysis: investigation of a hydrogen bond critical for loop closure in the reaction of triosephosphate isomerase. Biochemistry. 1992 Sep 15;31(36):8488–8494. doi: 10.1021/bi00151a015. [DOI] [PubMed] [Google Scholar]
  31. Schiffer C. A., Clifton I. J., Davisson V. J., Santi D. V., Stroud R. M. Crystal structure of human thymidylate synthase: a structural mechanism for guiding substrates into the active site. Biochemistry. 1995 Dec 19;34(50):16279–16287. doi: 10.1021/bi00050a007. [DOI] [PubMed] [Google Scholar]
  32. Schneider T. R., Gerhardt E., Lee M., Liang P. H., Anderson K. S., Schlichting I. Loop closure and intersubunit communication in tryptophan synthase. Biochemistry. 1998 Apr 21;37(16):5394–5406. doi: 10.1021/bi9728957. [DOI] [PubMed] [Google Scholar]
  33. Seeburg P. H., Colby W. W., Capon D. J., Goeddel D. V., Levinson A. D. Biological properties of human c-Ha-ras1 genes mutated at codon 12. Nature. 1984 Nov 1;312(5989):71–75. doi: 10.1038/312071a0. [DOI] [PubMed] [Google Scholar]
  34. Shintani T., Nomura K., Ichishima E. Engineering of porcine pepsin. Alteration of S1 substrate specificity of pepsin to those of fungal aspartic proteinases by site-directed mutagenesis. J Biol Chem. 1997 Jul 25;272(30):18855–18861. doi: 10.1074/jbc.272.30.18855. [DOI] [PubMed] [Google Scholar]
  35. Sielecki A. R., Fedorov A. A., Boodhoo A., Andreeva N. S., James M. N. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution. J Mol Biol. 1990 Jul 5;214(1):143–170. doi: 10.1016/0022-2836(90)90153-D. [DOI] [PubMed] [Google Scholar]
  36. Tanaka T., Yada R. Y. Engineered porcine pepsinogen exhibits dominant unimolecular activation. Arch Biochem Biophys. 1997 Apr 15;340(2):355–358. doi: 10.1006/abbi.1997.9925. [DOI] [PubMed] [Google Scholar]
  37. Tanaka T., Yada R. Y. Expression of soluble cloned porcine pepsinogen A in Escherichia coli. Biochem J. 1996 Apr 15;315(Pt 2):443–446. doi: 10.1042/bj3150443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tanaka T., Yamaguchi H., Kato H., Nishioka T., Katsube Y., Oda J. Flexibility impaired by mutations revealed the multifunctional roles of the loop in glutathione synthetase. Biochemistry. 1993 Nov 23;32(46):12398–12404. doi: 10.1021/bi00097a018. [DOI] [PubMed] [Google Scholar]
  39. Tang J., James M. N., Hsu I. N., Jenkins J. A., Blundell T. L. Structural evidence for gene duplication in the evolution of the acid proteases. Nature. 1978 Feb 16;271(5646):618–621. doi: 10.1038/271618a0. [DOI] [PubMed] [Google Scholar]
  40. Tramontano A., Chothia C., Lesk A. M. Structural determinants of the conformations of medium-sized loops in proteins. Proteins. 1989;6(4):382–394. doi: 10.1002/prot.340060405. [DOI] [PubMed] [Google Scholar]
  41. Wilks H. M., Moreton K. M., Halsall D. J., Hart K. W., Sessions R. D., Clarke A. R., Holbrook J. J. Design of a specific phenyllactate dehydrogenase by peptide loop exchange on the Bacillus stearothermophilus lactate dehydrogenase framework. Biochemistry. 1992 Sep 1;31(34):7802–7806. doi: 10.1021/bi00149a009. [DOI] [PubMed] [Google Scholar]
  42. Yüksel K. U., Sun A. Q., Gracy R. W., Schnackerz K. D. The hinged lid of yeast triose-phosphate isomerase. Determination of the energy barrier between the two conformations. J Biol Chem. 1994 Feb 18;269(7):5005–5008. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES