Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jul 1;349(Pt 1):203–210. doi: 10.1042/0264-6021:3490203

Unifying mechanism for Aplysia ADP-ribosyl cyclase and CD38/NAD(+) glycohydrolases.

C Cakir-Kiefer 1, H Muller-Steffner 1, F Schuber 1
PMCID: PMC1221138  PMID: 10861229

Abstract

Highly purified Aplysia californica ADP-ribosyl cyclase was found to be a multifunctional enzyme. In addition to the known transformation of NAD(+) into cADP-ribose this enzyme is able to catalyse the solvolysis (hydrolysis and methanolysis) of cADP-ribose. This cADP-ribose hydrolase activity, which becomes detectable only at high concentrations of the enzyme, is amplified with analogues such as pyridine adenine dinucleotide, in which the cleavage rate of the pyridinium-ribose bond is much reduced compared with NAD(+). Although the specificity ratio V(max)/K(m) is in favour of NAD(+) by 4 orders of magnitude, this multifunctionality allowed us to propose a 'partitioning' reaction scheme for the Aplysia enzyme, similar to that established previously for mammalian CD38/NAD(+) glycohydrolases. This mechanism involves the formation of a single oxocarbenium-type intermediate that partitions to cADP-ribose and solvolytic products via competing pathways. In favour of this mechanism was the finding that the enzyme also catalysed the hydrolysis of NMN(+), a substrate that cannot undergo cyclization. The major difference between the mammalian and the invertebrate enzymes resides in their relative cyclization/hydrolysis rate-constant ratios, which dictate their respective yields of cADP-ribose (ADP-ribosyl cyclase activity) and ADP-ribose (NAD(+) glycohydrolase activity). For the Aplysia enzyme's catalysed transformation of NAD(+) we favour a mechanism where the formation of cADP-ribose precedes that of ADP-ribose; i.e. macroscopically the invertebrate ADP-ribosyl cyclase conforms to a sequential reaction pathway as a limiting form of the partitioning mechanism.

Full Text

The Full Text of this article is available as a PDF (169.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Augustin A., Muller-Steffner H., Schuber F. Molecular cloning and functional expression of bovine spleen ecto-NAD+ glycohydrolase: structural identity with human CD38. Biochem J. 2000 Jan 1;345(Pt 1):43–52. doi: 10.1042/bj3450043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berthelier V., Tixier J. M., Muller-Steffner H., Schuber F., Deterre P. Human CD38 is an authentic NAD(P)+ glycohydrolase. Biochem J. 1998 Mar 15;330(Pt 3):1383–1390. doi: 10.1042/bj3301383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clapper D. L., Walseth T. F., Dargie P. J., Lee H. C. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem. 1987 Jul 15;262(20):9561–9568. [PubMed] [Google Scholar]
  4. Glick D. L., Hellmich M. R., Beushausen S., Tempst P., Bayley H., Strumwasser F. Primary structure of a molluscan egg-specific NADase, a second-messenger enzyme. Cell Regul. 1991 Mar;2(3):211–218. doi: 10.1091/mbc.2.3.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Graeff R. M., Walseth T. F., Fryxell K., Branton W. D., Lee H. C. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J Biol Chem. 1994 Dec 2;269(48):30260–30267. [PubMed] [Google Scholar]
  6. Hellmich M. R., Strumwasser F. Purification and characterization of a molluscan egg-specific NADase, a second-messenger enzyme. Cell Regul. 1991 Mar;2(3):193–202. doi: 10.1091/mbc.2.3.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Heukeshoven J., Dernick R. Improved silver staining procedure for fast staining in PhastSystem Development Unit. I. Staining of sodium dodecyl sulfate gels. Electrophoresis. 1988 Jan;9(1):28–32. doi: 10.1002/elps.1150090106. [DOI] [PubMed] [Google Scholar]
  8. Howard M., Grimaldi J. C., Bazan J. F., Lund F. E., Santos-Argumedo L., Parkhouse R. M., Walseth T. F., Lee H. C. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science. 1993 Nov 12;262(5136):1056–1059. doi: 10.1126/science.8235624. [DOI] [PubMed] [Google Scholar]
  9. Inageda K., Takahashi K., Tokita K., Nishina H., Kanaho Y., Kukimoto I., Kontani K., Hoshino S., Katada T. Enzyme properties of Aplysia ADP-ribosyl cyclase: comparison with NAD glycohydrolase of CD38 antigen. J Biochem. 1995 Jan;117(1):125–131. doi: 10.1093/oxfordjournals.jbchem.a124698. [DOI] [PubMed] [Google Scholar]
  10. Jacobson M. K., Cervantes-Laurean D., Strohm M. S., Coyle D. L., Bummer P. M., Jacobson E. L. NAD glycohydrolases and the metabolism of cyclic ADP-ribose. Biochimie. 1995;77(5):341–344. doi: 10.1016/0300-9084(96)88144-2. [DOI] [PubMed] [Google Scholar]
  11. Kim H., Jacobson E. L., Jacobson M. K. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science. 1993 Sep 3;261(5126):1330–1333. doi: 10.1126/science.8395705. [DOI] [PubMed] [Google Scholar]
  12. Lee H. C., Aarhus R. ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul. 1991 Mar;2(3):203–209. doi: 10.1091/mbc.2.3.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lee H. C., Galione A., Walseth T. F. Cyclic ADP-ribose: metabolism and calcium mobilizing function. Vitam Horm. 1994;48:199–257. doi: 10.1016/s0083-6729(08)60499-9. [DOI] [PubMed] [Google Scholar]
  14. Lee H. C., Graeff R. M., Munshi C. B., Walseth T. F., Aarhus R. Large-scale purification of Aplysia ADP-ribosylcyclase and measurement of its activity by fluorimetric assay. Methods Enzymol. 1997;280:331–340. doi: 10.1016/s0076-6879(97)80124-3. [DOI] [PubMed] [Google Scholar]
  15. Lee H. C., Graeff R. M., Walseth T. F. ADP-ribosyl cyclase and CD38. Multi-functional enzymes in Ca+2 signaling. Adv Exp Med Biol. 1997;419:411–419. [PubMed] [Google Scholar]
  16. Lee H. C. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol Rev. 1997 Oct;77(4):1133–1164. doi: 10.1152/physrev.1997.77.4.1133. [DOI] [PubMed] [Google Scholar]
  17. Migaud M. E., Pederick R. L., Bailey V. C., Potter B. V. Probing Aplysia californica adenosine 5'-diphosphate ribosyl cyclase for substrate binding requirements: design of potent inhibitors. Biochemistry. 1999 Jul 13;38(28):9105–9114. doi: 10.1021/bi9903392. [DOI] [PubMed] [Google Scholar]
  18. Muller-Steffner H. M., Augustin A., Schuber F. Mechanism of cyclization of pyridine nucleotides by bovine spleen NAD+ glycohydrolase. J Biol Chem. 1996 Sep 27;271(39):23967–23972. doi: 10.1074/jbc.271.39.23967. [DOI] [PubMed] [Google Scholar]
  19. Muller-Steffner H., Muzard M., Oppenheimer N., Schuber F. Mechanistic implications of cyclic ADP-ribose hydrolysis and methanolysis catalyzed by calf spleen NAD+glycohydrolase. Biochem Biophys Res Commun. 1994 Nov 15;204(3):1279–1285. doi: 10.1006/bbrc.1994.2601. [DOI] [PubMed] [Google Scholar]
  20. Muller-Steffner H., Schenherr-Gusse I., Tarnus C., Schuber F. Calf spleen NAD+ glycohydrolase: solubilization, purification, and properties of the intact form of the enzyme. Arch Biochem Biophys. 1993 Jul;304(1):154–162. doi: 10.1006/abbi.1993.1333. [DOI] [PubMed] [Google Scholar]
  21. Munshi C., Baumann C., Levitt D., Bloomfield V. A., Lee H. C. The homo-dimeric form of ADP-ribosyl cyclase in solution. Biochim Biophys Acta. 1998 Nov 10;1388(2):428–436. doi: 10.1016/s0167-4838(98)00204-0. [DOI] [PubMed] [Google Scholar]
  22. Munshi C., Thiel D. J., Mathews I. I., Aarhus R., Walseth T. F., Lee H. C. Characterization of the active site of ADP-ribosyl cyclase. J Biol Chem. 1999 Oct 22;274(43):30770–30777. doi: 10.1074/jbc.274.43.30770. [DOI] [PubMed] [Google Scholar]
  23. Prasad G. S., McRee D. E., Stura E. A., Levitt D. G., Lee H. C., Stout C. D. Crystal structure of Aplysia ADP ribosyl cyclase, a homologue of the bifunctional ectozyme CD38. Nat Struct Biol. 1996 Nov;3(11):957–964. doi: 10.1038/nsb1196-957. [DOI] [PubMed] [Google Scholar]
  24. Sauve A. A., Munshi C., Lee H. C., Schramm V. L. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries. Biochemistry. 1998 Sep 22;37(38):13239–13249. doi: 10.1021/bi981248s. [DOI] [PubMed] [Google Scholar]
  25. Schuber F., Pascal M., Travo P. Calf-spleen nicotinamide-adenine dinucleotide glycohydrolase. Properties of the active site. Eur J Biochem. 1978 Feb 1;83(1):205–214. doi: 10.1111/j.1432-1033.1978.tb12085.x. [DOI] [PubMed] [Google Scholar]
  26. Schuber F., Travo P. Calf-spleen nicotinamide--adenine dinucleotide glycohydrolase. Solubilization purification and properties of the enzyme. Eur J Biochem. 1976 May 17;65(1):247–255. doi: 10.1111/j.1432-1033.1976.tb10411.x. [DOI] [PubMed] [Google Scholar]
  27. States D. J., Walseth T. F., Lee H. C. Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38. Trends Biochem Sci. 1992 Dec;17(12):495–495. doi: 10.1016/0968-0004(92)90337-9. [DOI] [PubMed] [Google Scholar]
  28. Zhang F. J., Gu Q. M., Sih C. J. Bioorganic chemistry of cyclic ADP-ribose (cADPR). Bioorg Med Chem. 1999 May;7(5):653–664. doi: 10.1016/s0968-0896(98)00256-9. [DOI] [PubMed] [Google Scholar]
  29. Zocchi E., Franco L., Guida L., Benatti U., Bargellesi A., Malavasi F., Lee H. C., De Flora A. A single protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1459–1465. doi: 10.1006/bbrc.1993.2416. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES