Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jul 1;349(Pt 1):217–223. doi: 10.1042/0264-6021:3490217

Interaction of C3b(2)--IgG complexes with complement proteins properdin, factor B and factor H: implications for amplification.

E Jelezarova 1, A Vogt 1, H U Lutz 1
PMCID: PMC1221140  PMID: 10861231

Abstract

Nascent C3b can form ester bonds with various target molecules on the cell surface and in the fluid phase. Previously, we showed that C3b(2)--IgG complexes represent the major covalent product of C3 activation in serum [Lutz, Stammler, Jelezarova, Nater and Späth (1996) Blood 88, 184--193]. In the present report, binding of alternative pathway proteins to purified C3b(2)--IgG complexes was studied in the fluid phase by using biotinylated IgG for C3b(2)--IgG generation and avidin-coated plates to capture complexes. Up to seven moles of properdin 'monomer' bound per mole of C3b(2)--IgG at physiological conditions in the absence of any other complement protein. At low properdin/C3b(2)--IgG ratios bivalent binding was preferred. Neither factor H nor factor B affected properdin binding. On the other hand, properdin strongly stimulated factor B binding. Interactions of all three proteins with C3b(2)--IgG exhibited pH optima. An ionic strength optimum was most pronounced for properdin, while factor B binding was largely independent of the salt concentration. C3b(2)--IgG complexes were powerful precursors of the alternative pathway C3 convertase. In the presence of properdin, C3 convertase generated from C3b(2)--IgG cleaved about sevenfold more C3 than the enzyme generated on C3b. C3b(2)--IgG complexes could therefore maintain the amplification loop of complement longer than free C3b.

Full Text

The Full Text of this article is available as a PDF (167.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basta M., Kirshbom P., Frank M. M., Fries L. F. Mechanism of therapeutic effect of high-dose intravenous immunoglobulin. Attenuation of acute, complement-dependent immune damage in a guinea pig model. J Clin Invest. 1989 Dec;84(6):1974–1981. doi: 10.1172/JCI114387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Basta M., Langlois P. F., Marques M., Frank M. M., Fries L. F. High-dose intravenous immunoglobulin modifies complement-mediated in vivo clearance. Blood. 1989 Jul;74(1):326–333. [PubMed] [Google Scholar]
  3. Berger M., Gaither T. A., Cole R. M., Chused T. M., Hammer C. H., Frank M. M. Biotinylation of human C3. Mol Immunol. 1982 Jul;19(7):857–864. doi: 10.1016/0161-5890(82)90351-0. [DOI] [PubMed] [Google Scholar]
  4. Burger R., Bader A., Kirschfink M., Rother U., Schrod L., Wörner I., Zilow G. Functional analysis and quantification of the complement C3 derived anaphylatoxin C3a with a monoclonal antibody. Clin Exp Immunol. 1987 Jun;68(3):703–711. [PMC free article] [PubMed] [Google Scholar]
  5. Daoudaki M. E., Becherer J. D., Lambris J. D. A 34-amino acid peptide of the third component of complement mediates properdin binding. J Immunol. 1988 Mar 1;140(5):1577–1580. [PubMed] [Google Scholar]
  6. DiScipio R. G. The binding of human complement proteins C5, factor B, beta 1H and properdin to complement fragment C3b on zymosan. Biochem J. 1981 Dec 1;199(3):485–496. doi: 10.1042/bj1990485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fasler S., Skvaril F., Lutz H. U. Electrophoretic properties of human IgG and its subclasses on sodium dodecyl-sulfate-polyacrylamide gel electrophoresis and immunoblots. Anal Biochem. 1988 Nov 1;174(2):593–600. doi: 10.1016/0003-2697(88)90061-9. [DOI] [PubMed] [Google Scholar]
  8. Fishelson Z., Horstmann R. D., Müller-Eberhard H. J. Regulation of the alternative pathway of complement by pH. J Immunol. 1987 May 15;138(10):3392–3395. [PubMed] [Google Scholar]
  9. Fries L. F., Gaither T. A., Hammer C. H., Frank M. M. C3b covalently bound to IgG demonstrates a reduced rate of inactivation by factors H and I. J Exp Med. 1984 Dec 1;160(6):1640–1655. doi: 10.1084/jem.160.6.1640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fries L. F., Siwik S. A., Malbran A., Frank M. M. Phagocytosis of target particles bearing C3b-IgG covalent complexes by human monocytes and polymorphonuclear leucocytes. Immunology. 1987 Sep;62(1):45–51. [PMC free article] [PubMed] [Google Scholar]
  11. Gadd K. J., Reid K. B. The binding of complement component C3 to antibody-antigen aggregates after activation of the alternative pathway in human serum. Biochem J. 1981 May 1;195(2):471–480. doi: 10.1042/bj1950471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gretch D. R., Suter M., Stinski M. F. The use of biotinylated monoclonal antibodies and streptavidin affinity chromatography to isolate herpesvirus hydrophobic proteins or glycoproteins. Anal Biochem. 1987 May 15;163(1):270–277. doi: 10.1016/0003-2697(87)90123-0. [DOI] [PubMed] [Google Scholar]
  13. Hammer C. H., Wirtz G. H., Renfer L., Gresham H. D., Tack B. F. Large scale isolation of functionally active components of the human complement system. J Biol Chem. 1981 Apr 25;256(8):3995–4006. [PubMed] [Google Scholar]
  14. Higgins J. M., Wiedemann H., Timpl R., Reid K. B. Characterization of mutant forms of recombinant human properdin lacking single thrombospondin type I repeats. Identification of modules important for function. J Immunol. 1995 Dec 15;155(12):5777–5785. [PubMed] [Google Scholar]
  15. Janatova J., Lorenz P. E., Schechter A. N., Prahl J. W., Tack B. F. Third component of human complement: appearance of a sulfhydryl group following chemical or enzymatic inactivation. Biochemistry. 1980 Sep 16;19(19):4471–4478. [PubMed] [Google Scholar]
  16. Junker A., Baatrup G., Svehag S. E., Wang P., Holmström E., Sturfelt G., Sjöholm A. G. Binding of properdin to solid-phase immune complexes: critical role of the classical activation pathway of complement. Scand J Immunol. 1998 May;47(5):481–486. doi: 10.1046/j.1365-3083.1998.00335.x. [DOI] [PubMed] [Google Scholar]
  17. Kazatchkine M. D., Fearon D. T., Austen K. F. Human alternative complement pathway: membrane-associated sialic acid regulates the competition between B and beta1 H for cell-bound C3b. J Immunol. 1979 Jan;122(1):75–81. [PubMed] [Google Scholar]
  18. Kinoshita T., Takata Y., Kozono H., Takeda J., Hong K. S., Inoue K. C5 convertase of the alternative complement pathway: covalent linkage between two C3b molecules within the trimolecular complex enzyme. J Immunol. 1988 Dec 1;141(11):3895–3901. [PubMed] [Google Scholar]
  19. Kulics J., Rajnavölgyi E., Füst G., Gergely J. Interaction of C3 and C3b with immunoglobulin G. Mol Immunol. 1983 Aug;20(8):805–810. doi: 10.1016/0161-5890(83)90076-7. [DOI] [PubMed] [Google Scholar]
  20. Law S. K., Dodds A. W. The internal thioester and the covalent binding properties of the complement proteins C3 and C4. Protein Sci. 1997 Feb;6(2):263–274. doi: 10.1002/pro.5560060201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Law S. K., Lichtenberg N. A., Levine R. P. Evidence for an ester linkage between the labile binding site of C3b and receptive surfaces. J Immunol. 1979 Sep;123(3):1388–1394. [PubMed] [Google Scholar]
  22. Lutz H. U., Nater M., Stammler P. Naturally occurring anti-band 3 antibodies have a unique affinity for C3. Immunology. 1993 Oct;80(2):191–196. [PMC free article] [PubMed] [Google Scholar]
  23. Lutz H. U., Stammler P., Fasler S. Preferential formation of C3b-IgG complexes in vitro and in vivo from nascent C3b and naturally occurring anti-band 3 antibodies. J Biol Chem. 1993 Aug 15;268(23):17418–17426. [PubMed] [Google Scholar]
  24. Lutz H. U., Stammler P., Fischer E. A. Covalent binding of detergent-solubilized membrane glycoproteins to 'Chemobond' plates for ELISA. J Immunol Methods. 1990 May 25;129(2):211–220. doi: 10.1016/0022-1759(90)90441-w. [DOI] [PubMed] [Google Scholar]
  25. Lutz H. U., Stammler P., Jelezarova E., Nater M., Späth P. J. High doses of immunoglobulin G attenuate immune aggregate-mediated complement activation by enhancing physiologic cleavage of C3b in C3bn-IgG complexes. Blood. 1996 Jul 1;88(1):184–193. [PubMed] [Google Scholar]
  26. Meri S., Pangburn M. K. A mechanism of activation of the alternative complement pathway by the classical pathway: protection of C3b from inactivation by covalent attachment to C4b. Eur J Immunol. 1990 Dec;20(12):2555–2561. doi: 10.1002/eji.1830201205. [DOI] [PubMed] [Google Scholar]
  27. Pangburn M. K. Analysis of recognition in the alternative pathway of complement. Effect of polysaccharide size. J Immunol. 1989 Apr 15;142(8):2766–2770. [PubMed] [Google Scholar]
  28. Pangburn M. K. Analysis of the mechanism of recognition in the complement alternative pathway using C3b-bound low molecular weight polysaccharides. J Immunol. 1989 Apr 15;142(8):2759–2765. [PubMed] [Google Scholar]
  29. Pangburn M. K. Analysis of the natural polymeric forms of human properdin and their functions in complement activation. J Immunol. 1989 Jan 1;142(1):202–207. [PubMed] [Google Scholar]
  30. Pryzdial E. L., Isenman D. E. A thermodynamic study of the interaction between human complement components C3b or C3(H2O) and factor B in solution. J Biol Chem. 1988 Feb 5;263(4):1733–1738. [PubMed] [Google Scholar]
  31. Rawal N., Pangburn M. K. C5 convertase of the alternative pathway of complement. Kinetic analysis of the free and surface-bound forms of the enzyme. J Biol Chem. 1998 Jul 3;273(27):16828–16835. doi: 10.1074/jbc.273.27.16828. [DOI] [PubMed] [Google Scholar]
  32. Sahu A., Kozel T. R., Pangburn M. K. Specificity of the thioester-containing reactive site of human C3 and its significance to complement activation. Biochem J. 1994 Sep 1;302(Pt 2):429–436. doi: 10.1042/bj3020429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sahu A., Pangburn M. K. Covalent attachment of human complement C3 to IgG. Identification of the amino acid residue involved in ester linkage formation. J Biol Chem. 1994 Nov 18;269(46):28997–29002. [PubMed] [Google Scholar]
  34. Schwaeble W. J., Reid K. B. Does properdin crosslink the cellular and the humoral immune response? Immunol Today. 1999 Jan;20(1):17–21. doi: 10.1016/s0167-5699(98)01376-0. [DOI] [PubMed] [Google Scholar]
  35. Shohet J. M., Bergamaschini L., Davis A. E., Carroll M. C. Localization of the human complement component C3 binding site on the IgG heavy chain. J Biol Chem. 1991 Oct 5;266(28):18520–18524. [PubMed] [Google Scholar]
  36. Soames C. J., Sim R. B. Interactions between human complement components factor H, factor I and C3b. Biochem J. 1997 Sep 1;326(Pt 2):553–561. doi: 10.1042/bj3260553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Takata Y., Tamura N., Fujita T. Interaction of C3 with antigen-antibody complexes in the process of solubilization of immune precipitates. J Immunol. 1984 May;132(5):2531–2537. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES