Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jul 1;349(Pt 1):289–297. doi: 10.1042/0264-6021:3490289

Heterologous expression, functional characterization and localization of two isoforms of the monkey iron transporter Nramp2.

L Zhang 1, T Lee 1, Y Wang 1, T W Soong 1
PMCID: PMC1221150  PMID: 10861241

Abstract

Natural resistance-associated macrophage protein 2 (Nramp2) has been suggested to be involved in transferrin-independent iron uptake. Two isoforms of the Nramp2 gene generated by alternative splicing of the 3' exons were identified in mouse, rat and human, but it is unclear if they perform distinct functions. To rationalize our previous work, which indicated an increase in iron deposition in a Parkinsonian monkey brain, two monkey Nramp2 isoforms were isolated for a comparative study to assess their relative iron-uptake abilities, tissue distribution and subcellular localization. The monkey Nramp2 isoforms, 2a and 2b, exhibit approx. 98% identity at the amino acid level when compared with the human homologues. The Nramp2a transcript contains a canonical iron-responsive element (IRE), whereas that of Nramp2b lacks the IRE motif in the 3' untranslated region. By reverse transcriptase (RT)-PCR, the mRNAs of both isoforms were detected in all tissues examined. The amino acid differences at the C-terminus neither affected the protein expression levels in HEK-293T and COS-7 cells nor altered the subcellular localization and tissue distribution of the isoforms. Similar levels of iron uptake were detected in the HEK-293T cells transfected with either the Nramp2a or 2b gene, and a reduction of iron from the ferric (Fe(3+)) to the ferrous (Fe(2+)) state is necessary before transport can take place. However, this transferrin-independent uptake of iron into the cells is not a Ca(2+)-dependent process.

Full Text

The Full Text of this article is available as a PDF (243.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):2241–2245. doi: 10.1093/nar/19.suppl.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barisani D., Berg C. L., Wessling-Resnick M., Gollan J. L. Evidence for a low Km transporter for non-transferrin-bound iron in isolated rat hepatocytes. Am J Physiol. 1995 Oct;269(4 Pt 1):G570–G576. doi: 10.1152/ajpgi.1995.269.4.G570. [DOI] [PubMed] [Google Scholar]
  3. Beard J. L., Connor J. R., Jones B. C. Iron in the brain. Nutr Rev. 1993 Jun;51(6):157–170. doi: 10.1111/j.1753-4887.1993.tb03096.x. [DOI] [PubMed] [Google Scholar]
  4. Casey J. L., Hentze M. W., Koeller D. M., Caughman S. W., Rouault T. A., Klausner R. D., Harford J. B. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science. 1988 May 13;240(4854):924–928. doi: 10.1126/science.2452485. [DOI] [PubMed] [Google Scholar]
  5. Fleming M. D., Romano M. A., Su M. A., Garrick L. M., Garrick M. D., Andrews N. C. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1148–1153. doi: 10.1073/pnas.95.3.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fleming M. D., Trenor C. C., 3rd, Su M. A., Foernzler D., Beier D. R., Dietrich W. F., Andrews N. C. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet. 1997 Aug;16(4):383–386. doi: 10.1038/ng0897-383. [DOI] [PubMed] [Google Scholar]
  7. Fleming R. E., Migas M. C., Zhou X., Jiang J., Britton R. S., Brunt E. M., Tomatsu S., Waheed A., Bacon B. R., Sly W. S. Mechanism of increased iron absorption in murine model of hereditary hemochromatosis: increased duodenal expression of the iron transporter DMT1. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3143–3148. doi: 10.1073/pnas.96.6.3143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garrick M. D., Gniecko K., Liu Y., Cohan D. S., Garrick L. M. Transferrin and the transferrin cycle in Belgrade rat reticulocytes. J Biol Chem. 1993 Jul 15;268(20):14867–14874. [PubMed] [Google Scholar]
  9. Gelman B. B. Iron in CNS disease. J Neuropathol Exp Neurol. 1995 Jul;54(4):477–486. doi: 10.1097/00005072-199507000-00001. [DOI] [PubMed] [Google Scholar]
  10. Gerlach M., Ben-Shachar D., Riederer P., Youdim M. B. Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem. 1994 Sep;63(3):793–807. doi: 10.1046/j.1471-4159.1994.63030793.x. [DOI] [PubMed] [Google Scholar]
  11. Goto K., Mochizuki H., Imai H., Akiyama H., Mizuno Y. An immuno-histochemical study of ferritin in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Brain Res. 1996 Jun 10;724(1):125–128. doi: 10.1016/0006-8993(96)00284-3. [DOI] [PubMed] [Google Scholar]
  12. Gruenheid S., Canonne-Hergaux F., Gauthier S., Hackam D. J., Grinstein S., Gros P. The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. J Exp Med. 1999 Mar 1;189(5):831–841. doi: 10.1084/jem.189.5.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gunshin H., Mackenzie B., Berger U. V., Gunshin Y., Romero M. F., Boron W. F., Nussberger S., Gollan J. L., Hediger M. A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997 Jul 31;388(6641):482–488. doi: 10.1038/41343. [DOI] [PubMed] [Google Scholar]
  14. He Y., Lee T., Leong S. K. Time-course and localization of transferrin receptor expression in the substantia nigra of 6-hydroxydopamine-induced parkinsonian rats. Neuroscience. 1999;91(2):579–585. doi: 10.1016/s0306-4522(98)00669-1. [DOI] [PubMed] [Google Scholar]
  15. He Y., Thong P. S., Lee T., Leong S. K., Shi C. Y., Wong P. T., Yuan S. Y., Watt F. Increased iron in the substantia nigra of 6-OHDA induced parkinsonian rats: a nuclear microscopy study. Brain Res. 1996 Sep 30;735(1):149–153. doi: 10.1016/0006-8993(96)00313-7. [DOI] [PubMed] [Google Scholar]
  16. Jenner P., Olanow C. W. Oxidative stress and the pathogenesis of Parkinson's disease. Neurology. 1996 Dec;47(6 Suppl 3):S161–S170. doi: 10.1212/wnl.47.6_suppl_3.161s. [DOI] [PubMed] [Google Scholar]
  17. Karlin K. D. Metalloenzymes, structural motifs, and inorganic models. Science. 1993 Aug 6;261(5122):701–708. doi: 10.1126/science.7688141. [DOI] [PubMed] [Google Scholar]
  18. Kishi F., Tabuchi M. Complete nucleotide sequence of human NRAMP2 cDNA. Mol Immunol. 1997 Aug-Sep;34(12-13):839–842. doi: 10.1016/s0161-5890(97)00110-7. [DOI] [PubMed] [Google Scholar]
  19. Kishi F., Tabuchi M. Human natural resistance-associated macrophage protein 2: gene cloning and protein identification. Biochem Biophys Res Commun. 1998 Oct 29;251(3):775–783. doi: 10.1006/bbrc.1998.9415. [DOI] [PubMed] [Google Scholar]
  20. Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991 Oct 25;266(30):19867–19870. [PubMed] [Google Scholar]
  21. Lee P. L., Gelbart T., West C., Halloran C., Beutler E. The human Nramp2 gene: characterization of the gene structure, alternative splicing, promoter region and polymorphisms. Blood Cells Mol Dis. 1998 Jun;24(2):199–215. doi: 10.1006/bcmd.1998.0186. [DOI] [PubMed] [Google Scholar]
  22. Pinner E., Gruenheid S., Raymond M., Gros P. Functional complementation of the yeast divalent cation transporter family SMF by NRAMP2, a member of the mammalian natural resistance-associated macrophage protein family. J Biol Chem. 1997 Nov 14;272(46):28933–28938. doi: 10.1074/jbc.272.46.28933. [DOI] [PubMed] [Google Scholar]
  23. Qian Z. M., Wang Q. Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders. Brain Res Brain Res Rev. 1998 Aug;27(3):257–267. doi: 10.1016/s0165-0173(98)00012-5. [DOI] [PubMed] [Google Scholar]
  24. Roskams A. J., Connor J. R. Iron, transferrin, and ferritin in the rat brain during development and aging. J Neurochem. 1994 Aug;63(2):709–716. doi: 10.1046/j.1471-4159.1994.63020709.x. [DOI] [PubMed] [Google Scholar]
  25. Sturrock A., Alexander J., Lamb J., Craven C. M., Kaplan J. Characterization of a transferrin-independent uptake system for iron in HeLa cells. J Biol Chem. 1990 Feb 25;265(6):3139–3145. [PubMed] [Google Scholar]
  26. Su M. A., Trenor C. C., Fleming J. C., Fleming M. D., Andrews N. C. The G185R mutation disrupts function of the iron transporter Nramp2. Blood. 1998 Sep 15;92(6):2157–2163. [PubMed] [Google Scholar]
  27. de Silva D. M., Askwith C. C., Kaplan J. Molecular mechanisms of iron uptake in eukaryotes. Physiol Rev. 1996 Jan;76(1):31–47. doi: 10.1152/physrev.1996.76.1.31. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES