Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jul 1;349(Pt 1):309–321. doi: 10.1042/0264-6021:3490309

Oxalate oxidases and differentiating surface structure in wheat: germins.

B G Lane 1
PMCID: PMC1221152  PMID: 10861243

Abstract

Oxalate oxidases (OXOs) have been found to be concentrated in the surface tissues of wheat embryos and grains: germin is concentrated in root and leaf sheaths that surround germinated embryos; pseudogermin (OXO-psi) is concentrated in the epidermis and bracts that 'encircle' mature grains. Most strikingly, the epidermal accumulation of OXO-psi was found to presage the transition of a delicate 'skin', similar to the fragile epidermis of human skin, into the tough shell (the miller's 'beeswing') that is typical of mature wheat grains. A narrow range of oxalate concentration (1--2 mM) in the hydrated tissues of major crop cereals (barley, maize, oat, rice, rye and wheat) contrasted with wide variations in their OXO expression, e.g. cold-tolerant and cold-sensitive varieties of maize have similar oxalate contents but the former was found to contain approx. 20-fold more germin than did the latter. Well-known OXOs in sorghum, a minor cereal, and beet, a dicotyledon, were found to have little antigenic relatedness to the germins, but the beet enzyme did share some of the unique stability properties that are peculiar to the germin-like OXOs that are found only in the major crop cereals. Their concentration in surface structures of domesticated wheat suggests a biochemical role for germin-like OXOs: programmed cell death in surface tissues might be a constitutive as well as an adaptive form of differentiation that helps to produce refractory barriers against tissue invasion by predators. Incidental to the principal investigation, and using an OXO assay (oxalate-dependent release of CO(2)) that did not rely on detecting H(2)O(2), which is often fully degraded in cell extracts, it was found that OXO activity in soluble extracts of wheat was manifested only in standard solution assays if the extract was pretreated in a variety of ways, which included preincubation with pepsin or highly substituted glucuronogalactoarabinoxylans (cell-wall polysaccharides).

Full Text

The Full Text of this article is available as a PDF (411.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bäumlein H., Braun H., Kakhovskaya I. A., Shutov A. D. Seed storage proteins of spermatophytes share a common ancestor with desiccation proteins of fungi. J Mol Evol. 1995 Dec;41(6):1070–1075. doi: 10.1007/BF00173188. [DOI] [PubMed] [Google Scholar]
  2. Caliskan M., Cuming A. C. Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination. Plant J. 1998 Jul;15(2):165–171. doi: 10.1046/j.1365-313x.1998.00191.x. [DOI] [PubMed] [Google Scholar]
  3. Carpita N. C., Gibeaut D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993 Jan;3(1):1–30. doi: 10.1111/j.1365-313x.1993.tb00007.x. [DOI] [PubMed] [Google Scholar]
  4. Carter C., Graham R. A., Thornburg R. W. Arabidopsis thaliana contains a large family of germin-like proteins: characterization of cDNA and genomic sequences encoding 12 unique family members. Plant Mol Biol. 1998 Dec;38(6):929–943. doi: 10.1023/a:1006038117130. [DOI] [PubMed] [Google Scholar]
  5. Chiriboga J. Purification and properties of oxalic acid oxidase. Arch Biochem Biophys. 1966 Sep 26;116(1):516–523. doi: 10.1016/0003-9861(66)90057-9. [DOI] [PubMed] [Google Scholar]
  6. Dietrich R. A., Delaney T. P., Uknes S. J., Ward E. R., Ryals J. A., Dangl J. L. Arabidopsis mutants simulating disease resistance response. Cell. 1994 May 20;77(4):565–577. doi: 10.1016/0092-8674(94)90218-6. [DOI] [PubMed] [Google Scholar]
  7. Domon J. M., Dumas B., Lainé E., Meyer Y., David A., David H. Three glycosylated polypeptides secreted by several embryogenic cell cultures of pine show highly specific serological affinity to antibodies directed against the wheat germin apoprotein monomer. Plant Physiol. 1995 May;108(1):141–148. doi: 10.1104/pp.108.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dumas B., Freyssinet G., Pallett K. E. Tissue-Specific Expression of Germin-Like Oxalate Oxidase during Development and Fungal Infection of Barley Seedlings. Plant Physiol. 1995 Apr;107(4):1091–1096. doi: 10.1104/pp.107.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dumas B., Sailland A., Cheviet J. P., Freyssinet G., Pallett K. Identification of barley oxalate oxidase as a germin-like protein. C R Acad Sci III. 1993 Aug;316(8):793–798. [PubMed] [Google Scholar]
  10. Dunwell J. M. Cupins: a new superfamily of functionally diverse proteins that include germins and plant storage proteins. Biotechnol Genet Eng Rev. 1998;15:1–32. doi: 10.1080/02648725.1998.10647950. [DOI] [PubMed] [Google Scholar]
  11. Dunwell JM, Gane PJ. Microbial relatives of seed storage proteins: conservation of motifs in a functionally diverse superfamily of enzymes . J Mol Evol. 1998 Feb;46(2):147–154. doi: 10.1007/pl00006289. [DOI] [PubMed] [Google Scholar]
  12. Gane P. J., Dunwell J. M., Warwicker J. Modeling based on the structure of vicilins predicts a histidine cluster in the active site of oxalate oxidase. J Mol Evol. 1998 Apr;46(4):488–493. doi: 10.1007/pl00006329. [DOI] [PubMed] [Google Scholar]
  13. Gibeaut D. M., Carpita N. C. Tracing cell wall biogenesis in intact cells and plants : selective turnover and alteration of soluble and cell wall polysaccharides in grasses. Plant Physiol. 1991 Oct;97(2):551–561. doi: 10.1104/pp.97.2.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Greenberg J. T., Guo A., Klessig D. F., Ausubel F. M. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell. 1994 May 20;77(4):551–563. doi: 10.1016/0092-8674(94)90217-8. [DOI] [PubMed] [Google Scholar]
  15. Hatch M. Spectrophotometric determination of oxalate in whole blood. Clin Chim Acta. 1990 Dec 14;193(3):199–202. doi: 10.1016/0009-8981(90)90252-n. [DOI] [PubMed] [Google Scholar]
  16. Heintzen C., Fischer R., Melzer S., Kappeler K., Apel K., Staiger D. Circadian oscillations of a transcript encoding a germin-like protein that is associated with cell walls in young leaves of the long-day plant Sinapis alba L. Plant Physiol. 1994 Nov;106(3):905–915. doi: 10.1104/pp.106.3.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hurkman W. J., Tanaka C. K. Germin Gene Expression Is Induced in Wheat Leaves by Powdery Mildew Infection. Plant Physiol. 1996 Jul;111(3):735–739. doi: 10.1104/pp.111.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Höfte H., Desprez T., Amselem J., Chiapello H., Rouzé P., Caboche M., Moisan A., Jourjon M. F., Charpenteau J. L., Berthomieu P. An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana. Plant J. 1993 Dec;4(6):1051–1061. doi: 10.1046/j.1365-313x.1993.04061051.x. [DOI] [PubMed] [Google Scholar]
  19. Iiyama K., Lam TBT., Stone B. A. Covalent Cross-Links in the Cell Wall. Plant Physiol. 1994 Feb;104(2):315–320. doi: 10.1104/pp.104.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. JOHNSTON F. B., STERN H. Mass isolation of viable wheat embryos. Nature. 1957 Jan 19;179(4551):160–161. doi: 10.1038/179160b0. [DOI] [PubMed] [Google Scholar]
  21. Jaikaran A. S., Kennedy T. D., Dratewka-Kos E., Lane B. G. Covalently bonded and adventitious glycans in germin. J Biol Chem. 1990 Jul 25;265(21):12503–12512. [PubMed] [Google Scholar]
  22. Kennedy T. D., Hanley-Bowdoin L. K., Lane B. G. Structural integrity of DNA and translational integrity of ribosomes in nuclease-treated cell-free protein synthesizing systems prepared from wheat germ and rabbit reticulocytes. J Biol Chem. 1981 Jun 10;256(11):5802–5809. [PubMed] [Google Scholar]
  23. Klump H., Di Ruggiero J., Kessel M., Park J. B., Adams M. W., Robb F. T. Glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus. Thermal denaturation and activation. J Biol Chem. 1992 Nov 5;267(31):22681–22685. [PubMed] [Google Scholar]
  24. Lane B. G., Bernier F., Dratewka-Kos E., Shafai R., Kennedy T. D., Pyne C., Munro J. R., Vaughan T., Walters D., Altomare F. Homologies between members of the germin gene family in hexaploid wheat and similarities between these wheat germins and certain Physarum spherulins. J Biol Chem. 1991 Jun 5;266(16):10461–10469. [PubMed] [Google Scholar]
  25. Lane B. G. Cellular desiccation and hydration: developmentally regulated proteins, and the maturation and germination of seed embryos. FASEB J. 1991 Nov;5(14):2893–2901. doi: 10.1096/fasebj.5.14.1752357. [DOI] [PubMed] [Google Scholar]
  26. Lane B. G., Cuming A. C., Frégeau J., Carpita N. C., Hurkman W. J., Bernier F., Dratewka-Kos E., Kennedy T. D. Germin isoforms are discrete temporal markers of wheat development. Pseudogermin is a uniquely thermostable water-soluble oligomeric protein in ungerminated embryos and like germin in germinated embryos, it is incorporated into cell walls. Eur J Biochem. 1992 Nov 1;209(3):961–969. doi: 10.1111/j.1432-1033.1992.tb17369.x. [DOI] [PubMed] [Google Scholar]
  27. Lane B. G., Dunwell J. M., Ray J. A., Schmitt M. R., Cuming A. C. Germin, a protein marker of early plant development, is an oxalate oxidase. J Biol Chem. 1993 Jun 15;268(17):12239–12242. [PubMed] [Google Scholar]
  28. Lane B. G. Oxalate, germin, and the extracellular matrix of higher plants. FASEB J. 1994 Mar 1;8(3):294–301. doi: 10.1096/fasebj.8.3.8143935. [DOI] [PubMed] [Google Scholar]
  29. Marcus A. Seed germination and the capacity for protein synthesis. Symp Soc Exp Biol. 1969;23:143–160. [PubMed] [Google Scholar]
  30. Membré N., Berna A., Neutelings G., David A., David H., Staiger D., Sáez Vásquez J., Raynal M., Delseny M., Bernier F. cDNA sequence, genomic organization and differential expression of three Arabidopsis genes for germin/oxalate oxidase-like proteins. Plant Mol Biol. 1997 Nov;35(4):459–469. doi: 10.1023/a:1005833028582. [DOI] [PubMed] [Google Scholar]
  31. Michalowski C. B., Bohnert H. J. Nucleotide Sequence of a Root-Specific Transcript Encoding a Germin-Like Protein from the Halophyte Mesembryanthemum crystallinum. Plant Physiol. 1992 Sep;100(1):537–538. doi: 10.1104/pp.100.1.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Obzansky D. M., Richardson K. E. Quantification of urinary oxalate with oxalate oxidase from beet stems. Clin Chem. 1983 Oct;29(10):1815–1819. [PubMed] [Google Scholar]
  33. Rahman S., Grzelczak Z., Kennedy T., Lane B. Germin. Molecular cloning of cDNA that selects germin mRNA from bulk wheat mRNA. Biochem Cell Biol. 1988 Feb;66(2):100–106. doi: 10.1139/o88-013. [DOI] [PubMed] [Google Scholar]
  34. Requena L., Bornemann S. Barley (Hordeum vulgare) oxalate oxidase is a manganese-containing enzyme. Biochem J. 1999 Oct 1;343(Pt 1):185–190. [PMC free article] [PubMed] [Google Scholar]
  35. Satyapal, Pundir C. S. Purification and properties of an oxalate oxidase from leaves of grain sorghum hybrid CSH-5. Biochim Biophys Acta. 1993 Jan 15;1161(1):1–5. doi: 10.1016/0167-4838(93)90188-w. [DOI] [PubMed] [Google Scholar]
  36. Thompson E. W., Lane B. G. Relation of protein synthesis in imbibing wheat embryos to the cell-free translational capacities of bulk mRNA from dry and imbibing embryos. J Biol Chem. 1980 Jun 25;255(12):5965–5970. [PubMed] [Google Scholar]
  37. Wagner G. J. Vacuolar Deposition of Ascorbate-derived Oxalic Acid in Barley. Plant Physiol. 1981 Mar;67(3):591–593. doi: 10.1104/pp.67.3.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Woo E. J., Dunwell J. M., Goodenough P. W., Pickersgill R. W. Barley oxalate oxidase is a hexameric protein related to seed storage proteins: evidence from X-ray crystallography. FEBS Lett. 1998 Oct 16;437(1-2):87–90. doi: 10.1016/s0014-5793(98)01203-4. [DOI] [PubMed] [Google Scholar]
  39. Yamahara T., Shiono T., Suzuki T., Tanaka K., Takio S., Sato K., Yamazaki S., Satoh T. Isolation of a germin-like protein with manganese superoxide dismutase activity from cells of a moss, Barbula unguiculata. J Biol Chem. 1999 Nov 19;274(47):33274–33278. doi: 10.1074/jbc.274.47.33274. [DOI] [PubMed] [Google Scholar]
  40. Zarembski P. M., Hodgkinson A. The fluorimetric determination of oxalic acid in blood and other biological materials. Biochem J. 1965 Sep;96(3):717–721. doi: 10.1042/bj0960717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zimmerlin A., Wojtaszek P., Bolwell G. P. Synthesis of dehydrogenation polymers of ferulic acid with high specificity by a purified cell-wall peroxidase from French bean (Phaseolus vulgaris L.). Biochem J. 1994 May 1;299(Pt 3):747–753. doi: 10.1042/bj2990747. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES