Abstract
Localized Ca(2+)-release signals (puffs) and propagated Ca(2+) waves were characterized in rat ureteric myocytes by confocal microscopy. Ca(2+) puffs were evoked by photorelease of low concentrations of Ins(1,4,5)P(3) from a caged precursor and by low concentrations of acetylcholine; they were also observed spontaneously in Ca(2+)-overloaded myocytes. Ca(2+) puffs showed some variability in amplitude, time course and spatial spread, suggesting that Ins(1,4,5)P(3)-gated channels exist in clusters containing variable numbers of channels and that within these clusters a variable number of channels can be recruited. Immunodetection of Ins(1,4,5)P(3) receptors revealed the existence of several spots of fluorescence in the confocal cell sections, supporting the existence of clusters of Ins(1,4,5)P(3) receptors. Strong Ins(1,4,5)P(3) photorelease and high concentrations of acetylcholine induced Ca(2+) waves that originated from an initiation site and propagated in the whole cell by spatial recruitment of neighbouring Ca(2+)-release sites. Both Ca(2+) puffs and Ca(2+) waves were blocked selectively by intracellular applications of heparin and an anti-Ins(1,4,5)P(3)-receptor antibody, but were unaffected by ryanodine and intracellular application of an anti-ryanodine receptor antibody. mRNAs encoding for the three subtypes of Ins(1,4,5)P(3) receptor and subtype 3 of ryanodine receptor were detected in these myocytes, and the maximal binding capacity of [(3)H]Ins(1,4,5)P(3) was 10- to 12-fold higher than that of [(3)H]ryanodine. These results suggest that Ins(1,4,5)P(3)-gated channels mediate a continuum of Ca(2+) signalling in smooth-muscle cells expressing a high level of Ins(1,4,5)P(3) receptors and no subtypes 1 and 2 of ryanodine receptors.
Full Text
The Full Text of this article is available as a PDF (318.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berridge M. J. Elementary and global aspects of calcium signalling. J Physiol. 1997 Mar 1;499(Pt 2):291–306. doi: 10.1113/jphysiol.1997.sp021927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boittin F. X., Coussin F., Macrez N., Mironneau C., Mironneau J. Inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channel-dependent Ca2+ signalling in rat portal vein myocytes. Cell Calcium. 1998 May;23(5):303–311. doi: 10.1016/s0143-4160(98)90026-4. [DOI] [PubMed] [Google Scholar]
- Boittin F. X., Macrez N., Halet G., Mironneau J. Norepinephrine-induced Ca(2+) waves depend on InsP(3) and ryanodine receptor activation in vascular myocytes. Am J Physiol. 1999 Jul;277(1 Pt 1):C139–C151. doi: 10.1152/ajpcell.1999.277.1.C139. [DOI] [PubMed] [Google Scholar]
- Bootman M. D., Berridge M. J., Lipp P. Cooking with calcium: the recipes for composing global signals from elementary events. Cell. 1997 Oct 31;91(3):367–373. doi: 10.1016/s0092-8674(00)80420-1. [DOI] [PubMed] [Google Scholar]
- Bootman M., Niggli E., Berridge M., Lipp P. Imaging the hierarchical Ca2+ signalling system in HeLa cells. J Physiol. 1997 Mar 1;499(Pt 2):307–314. doi: 10.1113/jphysiol.1997.sp021928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Burdyga T. V., Taggart M. J., Crichton C., Smith G. L., Wray S. The mechanism of Ca2+ release from the SR of permeabilised guinea-pig and rat ureteric smooth muscle. Biochim Biophys Acta. 1998 Mar 12;1402(1):109–114. doi: 10.1016/s0167-4889(97)00149-3. [DOI] [PubMed] [Google Scholar]
- Burdyga T. V., Taggart M. J., Wray S. Major difference between rat and guinea-pig ureter in the ability of agonists and caffeine to release Ca2+ and influence force. J Physiol. 1995 Dec 1;489(Pt 2):327–335. doi: 10.1113/jphysiol.1995.sp021054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Callamaras N., Marchant J. S., Sun X. P., Parker I. Activation and co-ordination of InsP3-mediated elementary Ca2+ events during global Ca2+ signals in Xenopus oocytes. J Physiol. 1998 May 15;509(Pt 1):81–91. doi: 10.1111/j.1469-7793.1998.081bo.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cardy T. J., Traynor D., Taylor C. W. Differential regulation of types-1 and -3 inositol trisphosphate receptors by cytosolic Ca2+. Biochem J. 1997 Dec 15;328(Pt 3):785–793. doi: 10.1042/bj3280785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng H., Lederer M. R., Lederer W. J., Cannell M. B. Calcium sparks and [Ca2+]i waves in cardiac myocytes. Am J Physiol. 1996 Jan;270(1 Pt 1):C148–C159. doi: 10.1152/ajpcell.1996.270.1.C148. [DOI] [PubMed] [Google Scholar]
- Cheng H., Lederer W. J., Cannell M. B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science. 1993 Oct 29;262(5134):740–744. doi: 10.1126/science.8235594. [DOI] [PubMed] [Google Scholar]
- De Smedt H., Missiaen L., Parys J. B., Henning R. H., Sienaert I., Vanlingen S., Gijsens A., Himpens B., Casteels R. Isoform diversity of the inositol trisphosphate receptor in cell types of mouse origin. Biochem J. 1997 Mar 1;322(Pt 2):575–583. doi: 10.1042/bj3220575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golovina V. A., Blaustein M. P. Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science. 1997 Mar 14;275(5306):1643–1648. doi: 10.1126/science.275.5306.1643. [DOI] [PubMed] [Google Scholar]
- Hagar R. E., Burgstahler A. D., Nathanson M. H., Ehrlich B. E. Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature. 1998 Nov 5;396(6706):81–84. doi: 10.1038/23954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iino M., Yamazawa T., Miyashita Y., Endo M., Kasai H. Critical intracellular Ca2+ concentration for all-or-none Ca2+ spiking in single smooth muscle cells. EMBO J. 1993 Dec 15;12(13):5287–5291. doi: 10.1002/j.1460-2075.1993.tb06224.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipp P., Niggli E. A hierarchical concept of cellular and subcellular Ca(2+)-signalling. Prog Biophys Mol Biol. 1996;65(3):265–296. doi: 10.1016/s0079-6107(96)00014-4. [DOI] [PubMed] [Google Scholar]
- Macrez-Leprêtre N., Kalkbrenner F., Schultz G., Mironneau J. Distinct functions of Gq and G11 proteins in coupling alpha1-adrenoreceptors to Ca2+ release and Ca2+ entry in rat portal vein myocytes. J Biol Chem. 1997 Feb 21;272(8):5261–5268. doi: 10.1074/jbc.272.8.5261. [DOI] [PubMed] [Google Scholar]
- Mironneau J., Arnaudeau S., Macrez-Lepretre N., Boittin F. X. Ca2+ sparks and Ca2+ waves activate different Ca(2+)-dependent ion channels in single myocytes from rat portal vein. Cell Calcium. 1996 Aug;20(2):153–160. doi: 10.1016/s0143-4160(96)90104-9. [DOI] [PubMed] [Google Scholar]
- Missiaen L., De Smedt H., Droogmans G., Casteels R. Luminal Ca2+ controls the activation of the inositol 1,4,5-trisphosphate receptor by cytosolic Ca2+. J Biol Chem. 1992 Nov 15;267(32):22961–22966. [PubMed] [Google Scholar]
- Missiaen L., Taylor C. W., Berridge M. J. Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores. Nature. 1991 Jul 18;352(6332):241–244. doi: 10.1038/352241a0. [DOI] [PubMed] [Google Scholar]
- Miyakawa T., Maeda A., Yamazawa T., Hirose K., Kurosaki T., Iino M. Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J. 1999 Mar 1;18(5):1303–1308. doi: 10.1093/emboj/18.5.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morel J. L., Boittin F. X., Halet G., Arnaudeau S., Mironneau C., Mironneau J. Effect of a 14-day hindlimb suspension on cytosolic Ca2+ concentration in rat portal vein myocytes. Am J Physiol. 1997 Dec;273(6 Pt 2):H2867–H2875. doi: 10.1152/ajpheart.1997.273.6.H2867. [DOI] [PubMed] [Google Scholar]
- Morel J. L., Macrez-Leprêtre N., Mironneau J. Angiotensin II-activated Ca2+ entry-induced release of Ca2+ from intracellular stores in rat portal vein myocytes. Br J Pharmacol. 1996 May;118(1):73–78. doi: 10.1111/j.1476-5381.1996.tb15368.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson M. T., Cheng H., Rubart M., Santana L. F., Bonev A. D., Knot H. J., Lederer W. J. Relaxation of arterial smooth muscle by calcium sparks. Science. 1995 Oct 27;270(5236):633–637. doi: 10.1126/science.270.5236.633. [DOI] [PubMed] [Google Scholar]
- Neylon C. B., Richards S. M., Larsen M. A., Agrotis A., Bobik A. Multiple types of ryanodine receptor/Ca2+ release channels are expressed in vascular smooth muscle. Biochem Biophys Res Commun. 1995 Oct 24;215(3):814–821. doi: 10.1006/bbrc.1995.2536. [DOI] [PubMed] [Google Scholar]
- Parker I., Yao Y. Ca2+ transients associated with openings of inositol trisphosphate-gated channels in Xenopus oocytes. J Physiol. 1996 Mar 15;491(Pt 3):663–668. doi: 10.1113/jphysiol.1996.sp021247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somlyo A. P., Somlyo A. V. Signal transduction and regulation in smooth muscle. Nature. 1994 Nov 17;372(6503):231–236. doi: 10.1038/372231a0. [DOI] [PubMed] [Google Scholar]
- Sonnleitner A., Conti A., Bertocchini F., Schindler H., Sorrentino V. Functional properties of the ryanodine receptor type 3 (RyR3) Ca2+ release channel. EMBO J. 1998 May 15;17(10):2790–2798. doi: 10.1093/emboj/17.10.2790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun X. P., Callamaras N., Marchant J. S., Parker I. A continuum of InsP3-mediated elementary Ca2+ signalling events in Xenopus oocytes. J Physiol. 1998 May 15;509(Pt 1):67–80. doi: 10.1111/j.1469-7793.1998.067bo.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas D., Lipp P., Berridge M. J., Bootman M. D. Hormone-evoked elementary Ca2+ signals are not stereotypic, but reflect activation of different size channel clusters and variable recruitment of channels within a cluster. J Biol Chem. 1998 Oct 16;273(42):27130–27136. doi: 10.1074/jbc.273.42.27130. [DOI] [PubMed] [Google Scholar]
- Tovey S. C., Godfrey R. E., Hughes P. J., Mezna M., Minchin S. D., Mikoshiba K., Michelangeli F. Identification and characterization of inositol 1,4,5-trisphosphate receptors in rat testis. Cell Calcium. 1997 Apr;21(4):311–319. doi: 10.1016/s0143-4160(97)90119-6. [DOI] [PubMed] [Google Scholar]
- Viard P., Exner T., Maier U., Mironneau J., Nürnberg B., Macrez N. Gbetagamma dimers stimulate vascular L-type Ca2+ channels via phosphoinositide 3-kinase. FASEB J. 1999 Apr;13(6):685–694. doi: 10.1096/fasebj.13.6.685. [DOI] [PubMed] [Google Scholar]