Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jul 1;349(Pt 1):353–356. doi: 10.1042/0264-6021:3490353

Impaired nitric oxide production in coronary endothelial cells of the spontaneously diabetic BB rat is due to tetrahydrobiopterin deficiency.

C J Meininger 1, R S Marinos 1, K Hatakeyama 1, R Martinez-Zaguilan 1, J D Rojas 1, K A Kelly 1, G Wu 1
PMCID: PMC1221156  PMID: 10861247

Abstract

Endothelial cells (EC) from diabetic BioBreeding (BB) rats have an impaired ability to produce NO. This deficiency is not due to a defect in the constitutive isoform of NO synthase in EC (ecNOS) or alterations in intracellular calcium, calmodulin, NADPH or arginine levels. Instead, ecNOS cannot produce sufficient NO because of a deficiency in tetrahydrobiopterin (BH(4)), a cofactor necessary for enzyme activity. EC from diabetic rats exhibited only 12% of the BH(4) levels found in EC from normal animals or diabetes-prone animals which did not develop disease. As a result, NO synthesis by EC of diabetic rats was only 18% of that for normal animals. Increasing BH(4) levels with sepiapterin increased NO production, suggesting that BH(4) deficiency is a metabolic basis for impaired endothelial NO synthesis in diabetic BB rats. This deficiency is due to decreased activity of GTP-cyclohydrolase I, the first and rate-limiting enzyme in the de novo biosynthesis of BH(4). GTP-cyclohydrolase activity was low because of a decreased expression of the protein in the diabetic cells.

Full Text

The Full Text of this article is available as a PDF (97.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Calver A., Collier J., Vallance P. Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes. J Clin Invest. 1992 Dec;90(6):2548–2554. doi: 10.1172/JCI116149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Calver A., Collier J., Vallance P. Nitric oxide and cardiovascular control. Exp Physiol. 1993 May;78(3):303–326. doi: 10.1113/expphysiol.1993.sp003687. [DOI] [PubMed] [Google Scholar]
  3. Cosentino F., Hishikawa K., Katusic Z. S., Lüscher T. F. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation. 1997 Jul 1;96(1):25–28. doi: 10.1161/01.cir.96.1.25. [DOI] [PubMed] [Google Scholar]
  4. Durante W., Sen A. K., Sunahara F. A. Impairment of endothelium-dependent relaxation in aortae from spontaneously diabetic rats. Br J Pharmacol. 1988 Jun;94(2):463–468. doi: 10.1111/j.1476-5381.1988.tb11548.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Elliott T. G., Cockcroft J. R., Groop P. H., Viberti G. C., Ritter J. M. Inhibition of nitric oxide synthesis in forearm vasculature of insulin-dependent diabetic patients: blunted vasoconstriction in patients with microalbuminuria. Clin Sci (Lond) 1993 Dec;85(6):687–693. doi: 10.1042/cs0850687. [DOI] [PubMed] [Google Scholar]
  6. Ford D. A., Rovetto M. J. Rat cardiac myocyte adenosine transport and metabolism. Am J Physiol. 1987 Jan;252(1 Pt 2):H54–H63. doi: 10.1152/ajpheart.1987.252.1.H54. [DOI] [PubMed] [Google Scholar]
  7. Fukushima T., Nixon J. C. Analysis of reduced forms of biopterin in biological tissues and fluids. Anal Biochem. 1980 Feb;102(1):176–188. doi: 10.1016/0003-2697(80)90336-x. [DOI] [PubMed] [Google Scholar]
  8. Ignarro L. J. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol. 1990;30:535–560. doi: 10.1146/annurev.pa.30.040190.002535. [DOI] [PubMed] [Google Scholar]
  9. Johnstone M. T., Creager S. J., Scales K. M., Cusco J. A., Lee B. K., Creager M. A. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation. 1993 Dec;88(6):2510–2516. doi: 10.1161/01.cir.88.6.2510. [DOI] [PubMed] [Google Scholar]
  10. Klaidman L. K., Leung A. C., Adams J. D., Jr High-performance liquid chromatography analysis of oxidized and reduced pyridine dinucleotides in specific brain regions. Anal Biochem. 1995 Jul 1;228(2):312–317. doi: 10.1006/abio.1995.1356. [DOI] [PubMed] [Google Scholar]
  11. Mancusi G., Hutter C., Baumgartner-Parzer S., Schmidt K., Schütz W., Sexl V. High-glucose incubation of human umbilical-vein endothelial cells does not alter expression and function either of G-protein alpha-subunits or of endothelial NO synthase. Biochem J. 1996 Apr 1;315(Pt 1):281–287. doi: 10.1042/bj3150281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Marliss E. B., Nakhooda A. F., Poussier P., Sima A. A. The diabetic syndrome of the 'BB' Wistar rat: possible relevance to type 1 (insulin-dependent) diabetes in man. Diabetologia. 1982 Apr;22(4):225–232. doi: 10.1007/BF00281296. [DOI] [PubMed] [Google Scholar]
  13. Martínez-Zaguilán R., Gurulé M. W., Lynch R. M. Simultaneous measurement of intracellular pH and Ca2+ in insulin-secreting cells by spectral imaging microscopy. Am J Physiol. 1996 May;270(5 Pt 1):C1438–C1446. doi: 10.1152/ajpcell.1996.270.5.C1438. [DOI] [PubMed] [Google Scholar]
  14. Martínez-Zaguilán R., Martínez G. M., Lattanzio F., Gillies R. J. Simultaneous measurement of intracellular pH and Ca2+ using the fluorescence of SNARF-1 and fura-2. Am J Physiol. 1991 Feb;260(2 Pt 1):C297–C307. doi: 10.1152/ajpcell.1991.260.2.C297. [DOI] [PubMed] [Google Scholar]
  15. Meraji S., Jayakody L., Senaratne M. P., Thomson A. B., Kappagoda T. Endothelium-dependent relaxation in aorta of BB rat. Diabetes. 1987 Aug;36(8):978–981. doi: 10.2337/diab.36.8.978. [DOI] [PubMed] [Google Scholar]
  16. Pieper G. M., Moore-Hilton G., Roza A. M. Evaluation of the mechanism of endothelial dysfunction in the genetically-diabetic BB rat. Life Sci. 1996;58(9):PL147–PL152. doi: 10.1016/0024-3205(95)02360-7. [DOI] [PubMed] [Google Scholar]
  17. Pieper G. M. Review of alterations in endothelial nitric oxide production in diabetes: protective role of arginine on endothelial dysfunction. Hypertension. 1998 May;31(5):1047–1060. doi: 10.1161/01.hyp.31.5.1047. [DOI] [PubMed] [Google Scholar]
  18. Rösen P., Ballhausen T., Bloch W., Addicks K. Endothelial relaxation is disturbed by oxidative stress in the diabetic rat heart: influence of tocopherol as antioxidant. Diabetologia. 1995 Oct;38(10):1157–1168. doi: 10.1007/BF00422364. [DOI] [PubMed] [Google Scholar]
  19. Stocchi V., Cucchiarini L., Canestrari F., Piacentini M. P., Fornaini G. A very fast ion-pair reversed-phase HPLC method for the separation of the most significant nucleotides and their degradation products in human red blood cells. Anal Biochem. 1987 Nov 15;167(1):181–190. doi: 10.1016/0003-2697(87)90150-3. [DOI] [PubMed] [Google Scholar]
  20. Viveros O. H., Lee C. L., Abou-Donia M. M., Nixon J. C., Nichol C. A. Biopterin cofactor biosynthesis: independent regulation of GTP cyclohydrolase in adrenal medulla and cortex. Science. 1981 Jul 17;213(4505):349–350. doi: 10.1126/science.7017928. [DOI] [PubMed] [Google Scholar]
  21. Voyta J. C., Via D. P., Butterfield C. E., Zetter B. R. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol. 1984 Dec;99(6):2034–2040. doi: 10.1083/jcb.99.6.2034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Werner-Felmayer G., Werner E. R., Fuchs D., Hausen A., Reibnegger G., Schmidt K., Weiss G., Wachter H. Pteridine biosynthesis in human endothelial cells. Impact on nitric oxide-mediated formation of cyclic GMP. J Biol Chem. 1993 Jan 25;268(3):1842–1846. [PubMed] [Google Scholar]
  23. Wu G. Y., Brosnan J. T. Macrophages can convert citrulline into arginine. Biochem J. 1992 Jan 1;281(Pt 1):45–48. doi: 10.1042/bj2810045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wu G., Marliss E. B. Enhanced glucose metabolism and respiratory burst in peritoneal macrophages from spontaneously diabetic BB rats. Diabetes. 1993 Apr;42(4):520–529. doi: 10.2337/diab.42.4.520. [DOI] [PubMed] [Google Scholar]
  25. Wu G., Meininger C. J. Impaired arginine metabolism and NO synthesis in coronary endothelial cells of the spontaneously diabetic BB rat. Am J Physiol. 1995 Oct;269(4 Pt 2):H1312–H1318. doi: 10.1152/ajpheart.1995.269.4.H1312. [DOI] [PubMed] [Google Scholar]
  26. Wu G., Meininger C. J. Regulation of L-arginine synthesis from L-citrulline by L-glutamine in endothelial cells. Am J Physiol. 1993 Dec;265(6 Pt 2):H1965–H1971. doi: 10.1152/ajpheart.1993.265.6.H1965. [DOI] [PubMed] [Google Scholar]
  27. Wu G., Morris S. M., Jr Arginine metabolism: nitric oxide and beyond. Biochem J. 1998 Nov 15;336(Pt 1):1–17. doi: 10.1042/bj3360001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yoneyama T., Brewer J. M., Hatakeyama K. GTP cyclohydrolase I feedback regulatory protein is a pentamer of identical subunits. Purification, cDNA cloning, and bacterial expression. J Biol Chem. 1997 Apr 11;272(15):9690–9696. doi: 10.1074/jbc.272.15.9690. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES