Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jul 1;349(Pt 1):357–368. doi: 10.1042/0264-6021:3490357

Inhibition of Ca(2+) signalling by p130, a phospholipase-C-related catalytically inactive protein: critical role of the p130 pleckstrin homology domain.

H Takeuchi 1, M Oike 1, H F Paterson 1, V Allen 1, T Kanematsu 1, Y Ito 1, C Erneux 1, M Katan 1, M Hirata 1
PMCID: PMC1221157  PMID: 10861248

Abstract

p130 was originally identified as an Ins(1,4,5)P(3)-binding protein similar to phospholipase C-delta but lacking any phospholipase activity. In the present study we have further analysed the interactions of p130 with inositol compounds in vitro. To determine which of the potential ligands interacts with p130 in cells, we performed an analysis of the cellular localization of this protein, the isolation of a protein-ligand complex from cell lysates and studied the effects of p130 on Ins(1,4,5)P(3)-mediated Ca(2+) signalling by using permeabilized and transiently or stably transfected COS-1 cells (COS-1(p130)). In vitro, p130 bound Ins(1,4,5)P(3) with a higher affinity than that for phosphoinositides. When the protein was isolated from COS-1(p130) cells by immunoprecipitation, it was found to be associated with Ins(1,4,5)P(3). Localization studies demonstrated the presence of the full-length p130 in the cytoplasm of living cells, not at the plasma membrane. In cell-based assays, p130 had an inhibitory effect on Ca(2+) signalling. When fura-2-loaded COS-1(p130) cells were stimulated with bradykinin, epidermal growth factor or ATP, it was found that the agonist-induced increase in free Ca(2+) concentration, observed in control cells, was inhibited in COS-1(p130). This inhibition was not accompanied by the decreased production of Ins(1,4,5)P(3); the intact p130 pleckstrin homology domain, known to be the ligand-binding site in vitro, was required for this effect in cells. These results suggest that Ins(1,4,5)P(3) could be the main p130 ligand in cells and that this binding has the potential to inhibit Ins(1,4,5)P(3)-mediated Ca(2+) signalling.

Full Text

The Full Text of this article is available as a PDF (398.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen V., Swigart P., Cheung R., Cockcroft S., Katan M. Regulation of inositol lipid-specific phospholipase cdelta by changes in Ca2+ ion concentrations. Biochem J. 1997 Oct 15;327(Pt 2):545–552. doi: 10.1042/bj3270545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  3. Bottomley M. J., Salim K., Panayotou G. Phospholipid-binding protein domains. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):165–183. doi: 10.1016/s0005-2760(98)00141-6. [DOI] [PubMed] [Google Scholar]
  4. Cullen P. J., Dawson A. P., Irvine R. F. Purification and characterization of an Ins(1,3,4,5)P4 binding protein from pig platelets: possible identification of a novel non-neuronal Ins(1,3,4,5)P4 receptor. Biochem J. 1995 Jan 1;305(Pt 1):139–143. doi: 10.1042/bj3050139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cullen P. J., Hsuan J. J., Truong O., Letcher A. J., Jackson T. R., Dawson A. P., Irvine R. F. Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature. 1995 Aug 10;376(6540):527–530. doi: 10.1038/376527a0. [DOI] [PubMed] [Google Scholar]
  6. Ellis M. V., James S. R., Perisic O., Downes C. P., Williams R. L., Katan M. Catalytic domain of phosphoinositide-specific phospholipase C (PLC). Mutational analysis of residues within the active site and hydrophobic ridge of plcdelta1. J Biol Chem. 1998 May 8;273(19):11650–11659. doi: 10.1074/jbc.273.19.11650. [DOI] [PubMed] [Google Scholar]
  7. Essen L. O., Perisic O., Cheung R., Katan M., Williams R. L. Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta. Nature. 1996 Apr 18;380(6575):595–602. doi: 10.1038/380595a0. [DOI] [PubMed] [Google Scholar]
  8. Frech M., Andjelkovic M., Ingley E., Reddy K. K., Falck J. R., Hemmings B. A. High affinity binding of inositol phosphates and phosphoinositides to the pleckstrin homology domain of RAC/protein kinase B and their influence on kinase activity. J Biol Chem. 1997 Mar 28;272(13):8474–8481. doi: 10.1074/jbc.272.13.8474. [DOI] [PubMed] [Google Scholar]
  9. Furuichi T., Yoshikawa S., Miyawaki A., Wada K., Maeda N., Mikoshiba K. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature. 1989 Nov 2;342(6245):32–38. doi: 10.1038/342032a0. [DOI] [PubMed] [Google Scholar]
  10. Hawkins P. T., Welch H., McGregor A., Eguinoa A., Gobert S., Krugmann S., Anderson K., Stokoe D., Stephens L. Signalling via phosphoinositide 3OH kinases. Biochem Soc Trans. 1997 Nov;25(4):1147–1151. doi: 10.1042/bst0251147. [DOI] [PubMed] [Google Scholar]
  11. Hirata M., Kanematsu T., Takeuchi H., Yagisawa H. Pleckstrin homology domain as an inositol compound binding module. Jpn J Pharmacol. 1998 Mar;76(3):255–263. doi: 10.1254/jjp.76.255. [DOI] [PubMed] [Google Scholar]
  12. Hirata M., Watanabe Y., Ishimatsu T., Ikebe T., Kimura Y., Yamaguchi K., Ozaki S., Koga T. Synthetic inositol trisphosphate analogs and their effects on phosphatase, kinase, and the release of Ca2+. J Biol Chem. 1989 Dec 5;264(34):20303–20308. [PubMed] [Google Scholar]
  13. Hirata M., Watanabe Y., Ishimatsu T., Yanaga F., Koga T., Ozaki S. Inositol 1,4,5-trisphosphate affinity chromatography. Biochem Biophys Res Commun. 1990 Apr 16;168(1):379–386. doi: 10.1016/0006-291x(90)91719-9. [DOI] [PubMed] [Google Scholar]
  14. Hirose K., Kadowaki S., Tanabe M., Takeshima H., Iino M. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science. 1999 May 28;284(5419):1527–1530. doi: 10.1126/science.284.5419.1527. [DOI] [PubMed] [Google Scholar]
  15. Kanematsu T., Misumi Y., Watanabe Y., Ozaki S., Koga T., Iwanaga S., Ikehara Y., Hirata M. A new inositol 1,4,5-trisphosphate binding protein similar to phospholipase C-delta 1. Biochem J. 1996 Jan 1;313(Pt 1):319–325. doi: 10.1042/bj3130319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kanematsu T., Takeya H., Watanabe Y., Ozaki S., Yoshida M., Koga T., Iwanaga S., Hirata M. Putative inositol 1,4,5-trisphosphate binding proteins in rat brain cytosol. J Biol Chem. 1992 Apr 5;267(10):6518–6525. [PubMed] [Google Scholar]
  17. Kanematsu T., Yoshimura K., Hidaka K., Takeuchi H., Katan M., Hirata M. Domain organization of p130, PLC-related catalytically inactive protein, and structural basis for the lack of enzyme activity. Eur J Biochem. 2000 May;267(9):2731–2737. doi: 10.1046/j.1432-1327.2000.01291.x. [DOI] [PubMed] [Google Scholar]
  18. Katan M. Families of phosphoinositide-specific phospholipase C: structure and function. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):5–17. doi: 10.1016/s0005-2760(98)00125-8. [DOI] [PubMed] [Google Scholar]
  19. Kikuno R., Nagase T., Ishikawa K., Hirosawa M., Miyajima N., Tanaka A., Kotani H., Nomura N., Ohara O. Prediction of the coding sequences of unidentified human genes. XIV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 1999 Jun 30;6(3):197–205. doi: 10.1093/dnares/6.3.197. [DOI] [PubMed] [Google Scholar]
  20. Kohno T., Otsuka T., Takano H., Yamamoto T., Hamaguchi M., Terada M., Yokota J. Identification of a novel phospholipase C family gene at chromosome 2q33 that is homozygously deleted in human small cell lung carcinoma. Hum Mol Genet. 1995 Apr;4(4):667–674. doi: 10.1093/hmg/4.4.667. [DOI] [PubMed] [Google Scholar]
  21. Koyanagi M., Ono K., Suga H., Iwabe N., Miyata T. Phospholipase C cDNAs from sponge and hydra: antiquity of genes involved in the inositol phospholipid signaling pathway. FEBS Lett. 1998 Nov 13;439(1-2):66–70. doi: 10.1016/s0014-5793(98)01339-8. [DOI] [PubMed] [Google Scholar]
  22. Leevers S. J., Vanhaesebroeck B., Waterfield M. D. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol. 1999 Apr;11(2):219–225. doi: 10.1016/s0955-0674(99)80029-5. [DOI] [PubMed] [Google Scholar]
  23. Lemmon M. A., Ferguson K. M., O'Brien R., Sigler P. B., Schlessinger J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10472–10476. doi: 10.1073/pnas.92.23.10472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. M A L., M F., J S., K F. Regulatory recruitment of signalling molecules to the cell membrane by pleckstrinhomology domains. Trends Cell Biol. 1997 Jun;7(6):237–242. doi: 10.1016/S0962-8924(97)01065-9. [DOI] [PubMed] [Google Scholar]
  25. Matsuda M., Kanematsu T., Takeuchi H., Kukita T., Hirata M. Localization of a novel inositol 1,4,5-trisphosphate binding protein, p130 in rat brain. Neurosci Lett. 1998 Nov 27;257(2):97–100. doi: 10.1016/s0304-3940(98)00810-6. [DOI] [PubMed] [Google Scholar]
  26. Matsuki N., Tateishi K., Takeuchi H., Yagisawa H., Kanematsu T., Oishi M., Hirata M. Antibodies against the PH domain of phospholipase C-delta1 inhibit Ins(1,4,5)P3-mediated Ca2+ release from the endoplasmic reticulum. Biochem Biophys Res Commun. 1999 Jun 24;260(1):42–47. doi: 10.1006/bbrc.1999.0869. [DOI] [PubMed] [Google Scholar]
  27. Nagano K., Fukami K., Minagawa T., Watanabe Y., Ozaki C., Takenawa T. A novel phospholipase C delta4 (PLCdelta4) splice variant as a negative regulator of PLC. J Biol Chem. 1999 Jan 29;274(5):2872–2879. doi: 10.1074/jbc.274.5.2872. [DOI] [PubMed] [Google Scholar]
  28. Otsuki M., Fukami K., Kohno T., Yokota J., Takenawa T. Identification and characterization of a new phospholipase C-like protein, PLC-L(2). Biochem Biophys Res Commun. 1999 Dec 9;266(1):97–103. doi: 10.1006/bbrc.1999.1784. [DOI] [PubMed] [Google Scholar]
  29. Palmer S., Hughes K. T., Lee D. Y., Wakelam M. J. Development of a novel, Ins(1,4,5)P3-specific binding assay. Its use to determine the intracellular concentration of Ins(1,4,5)P3 in unstimulated and vasopressin-stimulated rat hepatocytes. Cell Signal. 1989;1(2):147–156. doi: 10.1016/0898-6568(89)90004-1. [DOI] [PubMed] [Google Scholar]
  30. Paterson H. F., Savopoulos J. W., Perisic O., Cheung R., Ellis M. V., Williams R. L., Katan M. Phospholipase C delta 1 requires a pleckstrin homology domain for interaction with the plasma membrane. Biochem J. 1995 Dec 15;312(Pt 3):661–666. doi: 10.1042/bj3120661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rameh L. E., Cantley L. C. The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem. 1999 Mar 26;274(13):8347–8350. doi: 10.1074/jbc.274.13.8347. [DOI] [PubMed] [Google Scholar]
  32. Shears S. B. Metabolism of inositol phosphates. Adv Second Messenger Phosphoprotein Res. 1992;26:63–92. [PubMed] [Google Scholar]
  33. Stauffer T. P., Ahn S., Meyer T. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol. 1998 Mar 12;8(6):343–346. doi: 10.1016/s0960-9822(98)70135-6. [DOI] [PubMed] [Google Scholar]
  34. Stephens L. R., Jackson T. R., Hawkins P. T. Agonist-stimulated synthesis of phosphatidylinositol(3,4,5)-trisphosphate: a new intracellular signalling system? Biochim Biophys Acta. 1993 Oct 7;1179(1):27–75. doi: 10.1016/0167-4889(93)90072-w. [DOI] [PubMed] [Google Scholar]
  35. Takeuchi H., Kanematsu T., Misumi Y., Sakane F., Konishi H., Kikkawa U., Watanabe Y., Katan M., Hirata M. Distinct specificity in the binding of inositol phosphates by pleckstrin homology domains of pleckstrin, RAC-protein kinase, diacylglycerol kinase and a new 130 kDa protein. Biochim Biophys Acta. 1997 Dec 12;1359(3):275–285. doi: 10.1016/s0167-4889(97)00109-2. [DOI] [PubMed] [Google Scholar]
  36. Takeuchi H., Kanematsu T., Misumi Y., Yaakob H. B., Yagisawa H., Ikehara Y., Watanabe Y., Tan Z., Shears S. B., Hirata M. Localization of a high-affinity inositol 1,4,5-trisphosphate/inositol 1,4,5,6-tetrakisphosphate binding domain to the pleckstrin homology module of a new 130 kDa protein: characterization of the determinants of structural specificity. Biochem J. 1996 Sep 1;318(Pt 2):561–568. doi: 10.1042/bj3180561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Takeuchi H., Matsuda M., Yamamoto T., Kanematsu T., Kikkawa U., Yagisawa H., Watanabe Y., Hirata M. PTB domain of insulin receptor substrate-1 binds inositol compounds. Biochem J. 1998 Aug 15;334(Pt 1):211–218. doi: 10.1042/bj3340211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Várnai P., Balla T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol. 1998 Oct 19;143(2):501–510. doi: 10.1083/jcb.143.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wilcox R. A., Primrose W. U., Nahorski S. R., Challiss R. A. New developments in the molecular pharmacology of the myo-inositol 1,4,5-trisphosphate receptor. Trends Pharmacol Sci. 1998 Nov;19(11):467–475. doi: 10.1016/s0165-6147(98)01260-7. [DOI] [PubMed] [Google Scholar]
  40. Yagisawa H., Sakuma K., Paterson H. F., Cheung R., Allen V., Hirata H., Watanabe Y., Hirata M., Williams R. L., Katan M. Replacements of single basic amino acids in the pleckstrin homology domain of phospholipase C-delta1 alter the ligand binding, phospholipase activity, and interaction with the plasma membrane. J Biol Chem. 1998 Jan 2;273(1):417–424. doi: 10.1074/jbc.273.1.417. [DOI] [PubMed] [Google Scholar]
  41. Yoshida M., Kanematsu T., Watanabe Y., Koga T., Ozaki S., Iwanaga S., Hirata M. D-myo-inositol 1,4,5-trisphosphate-binding proteins in rat brain membranes. J Biochem. 1994 May;115(5):973–980. doi: 10.1093/oxfordjournals.jbchem.a124447. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES