Abstract
Sphingosine 1-phosphate is formed in cells in response to diverse stimuli, including growth factors, cytokines, G-protein-coupled receptor agonists, antigen, etc. Its production is catalysed by sphingosine kinase, while degradation is either via cleavage to produce palmitaldehyde and phosphoethanolamine or by dephosphorylation. In this review we discuss the most recent advances in our understanding of the role of the enzymes involved in metabolism of this lysolipid. Sphingosine 1-phosphate can also bind to members of the endothelial differentiation gene (EDG) G-protein-coupled receptor family [namely EDG1, EDG3, EDG5 (also known as H218 or AGR16), EDG6 and EDG8] to elicit biological responses. These receptors are coupled differentially via G(i), G(q), G(12/13) and Rho to multiple effector systems, including adenylate cyclase, phospholipases C and D, extracellular-signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase and non-receptor tyrosine kinases. These signalling pathways are linked to transcription factor activation, cytoskeletal proteins, adhesion molecule expression, caspase activities, etc. Therefore sphingosine 1-phosphate can affect diverse biological responses, including mitogenesis, differentiation, migration and apoptosis, via receptor-dependent mechanisms. Additionally, sphingosine 1-phosphate has been proposed to play an intracellular role, for example in Ca(2+) mobilization, activation of non-receptor tyrosine kinases, inhibition of caspases, etc. We review the evidence for both intracellular and extracellular actions, and extensively discuss future approaches that will ultimately resolve the question of dual action. Certainly, sphingosine 1-phosphate will prove to be unique if it elicits both extra- and intra-cellular actions. Finally, we review the evidence that implicates sphingosine 1-phosphate in pathophysiological disease states, such as cancer, angiogenesis and inflammation. Thus there is a need for the development of new therapeutic compounds, such as receptor antagonists. However, identification of the most suitable targets for drug intervention requires a full understanding of the signalling and action profile of this lysosphingolipid. This article describes where the research field is in relation to achieving this aim.
Full Text
The Full Text of this article is available as a PDF (231.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alemany R., Meyer zu Heringdorf D., van Koppen C. J., Jakobs K. H. Formyl peptide receptor signaling in HL-60 cells through sphingosine kinase. J Biol Chem. 1999 Feb 12;274(7):3994–3999. doi: 10.1074/jbc.274.7.3994. [DOI] [PubMed] [Google Scholar]
- An S., Bleu T., Hallmark O. G., Goetzl E. J. Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J Biol Chem. 1998 Apr 3;273(14):7906–7910. doi: 10.1074/jbc.273.14.7906. [DOI] [PubMed] [Google Scholar]
- An S., Bleu T., Zheng Y., Goetzl E. J. Recombinant human G protein-coupled lysophosphatidic acid receptors mediate intracellular calcium mobilization. Mol Pharmacol. 1998 Nov;54(5):881–888. doi: 10.1124/mol.54.5.881. [DOI] [PubMed] [Google Scholar]
- An S., Bleu T., Zheng Y. Transduction of intracellular calcium signals through G protein-mediated activation of phospholipase C by recombinant sphingosine 1-phosphate receptors. Mol Pharmacol. 1999 May;55(5):787–794. [PubMed] [Google Scholar]
- An S., Goetzl E. J., Lee H. Signaling mechanisms and molecular characteristics of G protein-coupled receptors for lysophosphatidic acid and sphingosine 1-phosphate. J Cell Biochem Suppl. 1998;30-31:147–157. [PubMed] [Google Scholar]
- An S., Zheng Y., Bleu T. Sphingosine 1-phosphate-induced cell proliferation, survival, and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5. J Biol Chem. 2000 Jan 7;275(1):288–296. doi: 10.1074/jbc.275.1.288. [DOI] [PubMed] [Google Scholar]
- Ancellin N., Hla T. Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5. J Biol Chem. 1999 Jul 2;274(27):18997–19002. doi: 10.1074/jbc.274.27.18997. [DOI] [PubMed] [Google Scholar]
- Augé N., Nikolova-Karakashian M., Carpentier S., Parthasarathy S., Nègre-Salvayre A., Salvayre R., Merrill A. H., Jr, Levade T. Role of sphingosine 1-phosphate in the mitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase, and sphingosine kinase. J Biol Chem. 1999 Jul 30;274(31):21533–21538. doi: 10.1074/jbc.274.31.21533. [DOI] [PubMed] [Google Scholar]
- Ayar A., Thatcher N. M., Zehavi U., Trentham D. R., Scott R. H. Mobilization of intracellular calcium by intracellular flash photolysis of caged dihydrosphingosine in cultured neonatal rat sensory neurones. Acta Biochim Pol. 1998;45(2):311–326. [PubMed] [Google Scholar]
- Bajjalieh S. M., Martin T. F., Floor E. Synaptic vesicle ceramide kinase. A calcium-stimulated lipid kinase that co-purifies with brain synaptic vesicles. J Biol Chem. 1989 Aug 25;264(24):14354–14360. [PubMed] [Google Scholar]
- Bandoh K., Aoki J., Hosono H., Kobayashi S., Kobayashi T., Murakami-Murofushi K., Tsujimoto M., Arai H., Inoue K. Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem. 1999 Sep 24;274(39):27776–27785. doi: 10.1074/jbc.274.39.27776. [DOI] [PubMed] [Google Scholar]
- Banno Y., Fujita H., Ono Y., Nakashima S., Ito Y., Kuzumaki N., Nozawa Y. Differential phospholipase D activation by bradykinin and sphingosine 1-phosphate in NIH 3T3 fibroblasts overexpressing gelsolin. J Biol Chem. 1999 Sep 24;274(39):27385–27391. doi: 10.1074/jbc.274.39.27385. [DOI] [PubMed] [Google Scholar]
- Banno Y., Kato M., Hara A., Nozawa Y. Evidence for the presence of multiple forms of Sph kinase in human platelets. Biochem J. 1998 Oct 15;335(Pt 2):301–304. doi: 10.1042/bj3350301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernardo K., Hurwitz R., Zenk T., Desnick R. J., Ferlinz K., Schuchman E. H., Sandhoff K. Purification, characterization, and biosynthesis of human acid ceramidase. J Biol Chem. 1995 May 12;270(19):11098–11102. doi: 10.1074/jbc.270.19.11098. [DOI] [PubMed] [Google Scholar]
- Betto R., Teresi A., Turcato F., Salviati G., Sabbadini R. A., Krown K., Glembotski C. C., Kindman L. A., Dettbarn C., Pereon Y. Sphingosylphosphocholine modulates the ryanodine receptor/calcium-release channel of cardiac sarcoplasmic reticulum membranes. Biochem J. 1997 Feb 15;322(Pt 1):327–333. doi: 10.1042/bj3220327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blakesley V. A., Beitner-Johnson D., Van Brocklyn J. R., Rani S., Shen-Orr Z., Stannard B. S., Spiegel S., LeRoith D. Sphingosine 1-phosphate stimulates tyrosine phosphorylation of Crk. J Biol Chem. 1997 Jun 27;272(26):16211–16215. doi: 10.1074/jbc.272.26.16211. [DOI] [PubMed] [Google Scholar]
- Bornfeldt K. E., Graves L. M., Raines E. W., Igarashi Y., Wayman G., Yamamura S., Yatomi Y., Sidhu J. S., Krebs E. G., Hakomori S. Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction. J Cell Biol. 1995 Jul;130(1):193–206. doi: 10.1083/jcb.130.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brindley D. N., Waggoner D. W. Mammalian lipid phosphate phosphohydrolases. J Biol Chem. 1998 Sep 18;273(38):24281–24284. doi: 10.1074/jbc.273.38.24281. [DOI] [PubMed] [Google Scholar]
- Buehrer B. M., Bardes E. S., Bell R. M. Protein kinase C-dependent regulation of human erythroleukemia (HEL) cell sphingosine kinase activity. Biochim Biophys Acta. 1996 Oct 18;1303(3):233–242. doi: 10.1016/0005-2760(96)00092-6. [DOI] [PubMed] [Google Scholar]
- Buehrer B. M., Bell R. M. Inhibition of sphingosine kinase in vitro and in platelets. Implications for signal transduction pathways. J Biol Chem. 1992 Feb 15;267(5):3154–3159. [PubMed] [Google Scholar]
- Buhl A. M., Johnson N. L., Dhanasekaran N., Johnson G. L. G alpha 12 and G alpha 13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J Biol Chem. 1995 Oct 20;270(42):24631–24634. doi: 10.1074/jbc.270.42.24631. [DOI] [PubMed] [Google Scholar]
- Bunting M., Tang W., Zimmerman G. A., McIntyre T. M., Prescott S. M. Molecular cloning and characterization of a novel human diacylglycerol kinase zeta. J Biol Chem. 1996 Apr 26;271(17):10230–10236. [PubMed] [Google Scholar]
- Bünemann M., Brandts B., zu Heringdorf D. M., van Koppen C. J., Jakobs K. H., Pott L. Activation of muscarinic K+ current in guinea-pig atrial myocytes by sphingosine-1-phosphate. J Physiol. 1995 Dec 15;489(Pt 3):701–707. doi: 10.1113/jphysiol.1995.sp021084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi O. H., Kim J. H., Kinet J. P. Calcium mobilization via sphingosine kinase in signalling by the Fc epsilon RI antigen receptor. Nature. 1996 Apr 18;380(6575):634–636. doi: 10.1038/380634a0. [DOI] [PubMed] [Google Scholar]
- Chung T., Crilly K. S., Anderson W. H., Mukherjee J. J., Kiss Z. ATP-dependent choline phosphate-induced mitogenesis in fibroblasts involves activation of pp70 S6 kinase and phosphatidylinositol 3'-kinase through an extracellular site. Synergistic mitogenic effects of choline phosphate and sphingosine 1-phosphate. J Biol Chem. 1997 Jan 31;272(5):3064–3072. doi: 10.1074/jbc.272.5.3064. [DOI] [PubMed] [Google Scholar]
- Conway A. M., Rakhit S., Pyne S., Pyne N. J. Platelet-derived-growth-factor stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role of pertussis-toxin-sensitive G-proteins, c-Src tyrosine kinases and phosphoinositide 3-kinase. Biochem J. 1999 Jan 15;337(Pt 2):171–177. [PMC free article] [PubMed] [Google Scholar]
- Coroneos E., Martinez M., McKenna S., Kester M. Differential regulation of sphingomyelinase and ceramidase activities by growth factors and cytokines. Implications for cellular proliferation and differentiation. J Biol Chem. 1995 Oct 6;270(40):23305–23309. doi: 10.1074/jbc.270.40.23305. [DOI] [PubMed] [Google Scholar]
- Coroneos E., Wang Y., Panuska J. R., Templeton D. J., Kester M. Sphingolipid metabolites differentially regulate extracellular signal-regulated kinase and stress-activated protein kinase cascades. Biochem J. 1996 May 15;316(Pt 1):13–17. doi: 10.1042/bj3160013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crespo P., Xu N., Simonds W. F., Gutkind J. S. Ras-dependent activation of MAP kinase pathway mediated by G-protein beta gamma subunits. Nature. 1994 Jun 2;369(6479):418–420. doi: 10.1038/369418a0. [DOI] [PubMed] [Google Scholar]
- Cuvillier O., Pirianov G., Kleuser B., Vanek P. G., Coso O. A., Gutkind S., Spiegel S. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature. 1996 Jun 27;381(6585):800–803. doi: 10.1038/381800a0. [DOI] [PubMed] [Google Scholar]
- Cuvillier O., Rosenthal D. S., Smulson M. E., Spiegel S. Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas- and ceramide-mediated apoptosis in Jurkat T lymphocytes. J Biol Chem. 1998 Jan 30;273(5):2910–2916. doi: 10.1074/jbc.273.5.2910. [DOI] [PubMed] [Google Scholar]
- Daaka Y., Luttrell L. M., Ahn S., Della Rocca G. J., Ferguson S. S., Caron M. G., Lefkowitz R. J. Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J Biol Chem. 1998 Jan 9;273(2):685–688. doi: 10.1074/jbc.273.2.685. [DOI] [PubMed] [Google Scholar]
- De Ceuster P., Mannaerts G. P., Van Veldhoven P. P. Identification and subcellular localization of sphinganine-phosphatases in rat liver. Biochem J. 1995 Oct 1;311(Pt 1):139–146. doi: 10.1042/bj3110139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dikic I., Tokiwa G., Lev S., Courtneidge S. A., Schlessinger J. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature. 1996 Oct 10;383(6600):547–550. doi: 10.1038/383547a0. [DOI] [PubMed] [Google Scholar]
- Durieux M. E., Carlisle S. J., Salafranca M. N., Lynch K. R. Responses to sphingosine-1-phosphate in X. laevis oocytes: similarities with lysophosphatidic acid signaling. Am J Physiol. 1993 May;264(5 Pt 1):C1360–C1364. doi: 10.1152/ajpcell.1993.264.5.C1360. [DOI] [PubMed] [Google Scholar]
- Edsall L. C., Pirianov G. G., Spiegel S. Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. J Neurosci. 1997 Sep 15;17(18):6952–6960. doi: 10.1523/JNEUROSCI.17-18-06952.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edsall L. C., Spiegel S. Enzymatic measurement of sphingosine 1-phosphate. Anal Biochem. 1999 Jul 15;272(1):80–86. doi: 10.1006/abio.1999.4157. [DOI] [PubMed] [Google Scholar]
- Edsall L. C., Van Brocklyn J. R., Cuvillier O., Kleuser B., Spiegel S. N,N-Dimethylsphingosine is a potent competitive inhibitor of sphingosine kinase but not of protein kinase C: modulation of cellular levels of sphingosine 1-phosphate and ceramide. Biochemistry. 1998 Sep 15;37(37):12892–12898. doi: 10.1021/bi980744d. [DOI] [PubMed] [Google Scholar]
- Erickson J. R., Wu J. J., Goddard J. G., Tigyi G., Kawanishi K., Tomei L. D., Kiefer M. C. Edg-2/Vzg-1 couples to the yeast pheromone response pathway selectively in response to lysophosphatidic acid. J Biol Chem. 1998 Jan 16;273(3):1506–1510. doi: 10.1074/jbc.273.3.1506. [DOI] [PubMed] [Google Scholar]
- Exton J. H. Regulation of phospholipase D. Biochim Biophys Acta. 1999 Jul 30;1439(2):121–133. doi: 10.1016/s1388-1981(99)00089-x. [DOI] [PubMed] [Google Scholar]
- Fatatis A., Miller R. J. Cell cycle control of PDGF-induced Ca(2+) signaling through modulation of sphingolipid metabolism. FASEB J. 1999 Aug;13(11):1291–1301. doi: 10.1096/fasebj.13.11.1291. [DOI] [PubMed] [Google Scholar]
- Fatatis A., Miller R. J. Sphingosine and sphingosine 1-phosphate differentially modulate platelet-derived growth factor-BB-induced Ca2+ signaling in transformed oligodendrocytes. J Biol Chem. 1996 Jan 5;271(1):295–301. doi: 10.1074/jbc.271.1.295. [DOI] [PubMed] [Google Scholar]
- Ghosh T. K., Bian J., Gill D. L. Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science. 1990 Jun 29;248(4963):1653–1656. doi: 10.1126/science.2163543. [DOI] [PubMed] [Google Scholar]
- Ghosh T. K., Bian J., Gill D. L. Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium. J Biol Chem. 1994 Sep 9;269(36):22628–22635. [PubMed] [Google Scholar]
- Glickman M., Malek R. L., Kwitek-Black A. E., Jacob H. J., Lee N. H. Molecular cloning, tissue-specific expression, and chromosomal localization of a novel nerve growth factor-regulated G-protein- coupled receptor, nrg-1. Mol Cell Neurosci. 1999 Aug;14(2):141–152. doi: 10.1006/mcne.1999.0776. [DOI] [PubMed] [Google Scholar]
- Goetzl E. J., Dolezalova H., Kong Y., Hu Y. L., Jaffe R. B., Kalli K. R., Conover C. A. Distinctive expression and functions of the type 4 endothelial differentiation gene-encoded G protein-coupled receptor for lysophosphatidic acid in ovarian cancer. Cancer Res. 1999 Oct 15;59(20):5370–5375. [PubMed] [Google Scholar]
- Goetzl E. J., Dolezalova H., Kong Y., Zeng L. Dual mechanisms for lysophospholipid induction of proliferation of human breast carcinoma cells. Cancer Res. 1999 Sep 15;59(18):4732–4737. [PubMed] [Google Scholar]
- Goetzl E. J., Kong Y., Mei B. Lysophosphatidic acid and sphingosine 1-phosphate protection of T cells from apoptosis in association with suppression of Bax. J Immunol. 1999 Feb 15;162(4):2049–2056. [PubMed] [Google Scholar]
- Gonda K., Okamoto H., Takuwa N., Yatomi Y., Okazaki H., Sakurai T., Kimura S., Sillard R., Harii K., Takuwa Y. The novel sphingosine 1-phosphate receptor AGR16 is coupled via pertussis toxin-sensitive and -insensitive G-proteins to multiple signalling pathways. Biochem J. 1999 Jan 1;337(Pt 1):67–75. [PMC free article] [PubMed] [Google Scholar]
- Goodemote K. A., Mattie M. E., Berger A., Spiegel S. Involvement of a pertussis toxin-sensitive G protein in the mitogenic signaling pathways of sphingosine 1-phosphate. J Biol Chem. 1995 Apr 28;270(17):10272–10277. doi: 10.1074/jbc.270.17.10272. [DOI] [PubMed] [Google Scholar]
- Gräler M. H., Bernhardt G., Lipp M. EDG6, a novel G-protein-coupled receptor related to receptors for bioactive lysophospholipids, is specifically expressed in lymphoid tissue. Genomics. 1998 Oct 15;53(2):164–169. doi: 10.1006/geno.1998.5491. [DOI] [PubMed] [Google Scholar]
- Guo C., Zheng C., Martin-Padura I., Bian Z. C., Guan J. L. Differential stimulation of proline-rich tyrosine kinase 2 and mitogen-activated protein kinase by sphingosine 1-phosphate. Eur J Biochem. 1998 Oct 15;257(2):403–408. doi: 10.1046/j.1432-1327.1998.2570403.x. [DOI] [PubMed] [Google Scholar]
- Hall A., Paterson H. F., Adamson P., Ridley A. J. Cellular responses regulated by rho-related small GTP-binding proteins. Philos Trans R Soc Lond B Biol Sci. 1993 Jun 29;340(1293):267–271. doi: 10.1098/rstb.1993.0067. [DOI] [PubMed] [Google Scholar]
- Hannun Y. A., Bell R. M. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science. 1989 Jan 27;243(4890):500–507. doi: 10.1126/science.2643164. [DOI] [PubMed] [Google Scholar]
- Hart M. J., Jiang X., Kozasa T., Roscoe W., Singer W. D., Gilman A. G., Sternweis P. C., Bollag G. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science. 1998 Jun 26;280(5372):2112–2114. doi: 10.1126/science.280.5372.2112. [DOI] [PubMed] [Google Scholar]
- Hecht J. H., Weiner J. A., Post S. R., Chun J. Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol. 1996 Nov;135(4):1071–1083. doi: 10.1083/jcb.135.4.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill C. S., Marais R., John S., Wynne J., Dalton S., Treisman R. Functional analysis of a growth factor-responsive transcription factor complex. Cell. 1993 Apr 23;73(2):395–406. doi: 10.1016/0092-8674(93)90238-l. [DOI] [PubMed] [Google Scholar]
- Hill C. S., Wynne J., Treisman R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell. 1995 Jun 30;81(7):1159–1170. doi: 10.1016/s0092-8674(05)80020-0. [DOI] [PubMed] [Google Scholar]
- Hla T., Maciag T. An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J Biol Chem. 1990 Jun 5;265(16):9308–9313. [PubMed] [Google Scholar]
- Hofmann K., Dixit V. M. Ceramide in apoptosis--does it really matter? Trends Biochem Sci. 1998 Oct;23(10):374–377. doi: 10.1016/s0968-0004(98)01289-4. [DOI] [PubMed] [Google Scholar]
- Holgado-Madruga M., Emlet D. R., Moscatello D. K., Godwin A. K., Wong A. J. A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature. 1996 Feb 8;379(6565):560–564. doi: 10.1038/379560a0. [DOI] [PubMed] [Google Scholar]
- Huang W. C., Chueh S. H. Calcium mobilization from the intracellular mitochondrial and nonmitochondrial stores of the rat cerebellum. Brain Res. 1996 Apr 29;718(1-2):151–158. doi: 10.1016/0006-8993(96)00108-4. [DOI] [PubMed] [Google Scholar]
- Hung W. C., Chuang L. Y. Induction of apoptosis by sphingosine-1-phosphate in human hepatoma cells is associated with enhanced expression of bax gene product. Biochem Biophys Res Commun. 1996 Dec 4;229(1):11–15. doi: 10.1006/bbrc.1996.1750. [DOI] [PubMed] [Google Scholar]
- Igarashi Y., Yatomi Y., Kickler T. S. Sphingosine-phosphate content in the plasma of platelet concentrates correlates with poor platelet increments after transfusion and with occurrences of transfusion reactions in patients. Am J Hematol. 1998 Mar;57(3):261–262. doi: 10.1002/(sici)1096-8652(199803)57:3<261::aid-ajh19>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
- Igarashi Y., Yatomi Y. Sphingosine 1-phosphate is a blood constituent released from activated platelets, possibly playing a variety of physiological and pathophysiological roles. Acta Biochim Pol. 1998;45(2):299–309. [PubMed] [Google Scholar]
- Im D. S., Heise C. E., Ancellin N., O'Dowd B. F., Shei G. J., Heavens R. P., Rigby M. R., Hla T., Mandala S., McAllister G. Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. J Biol Chem. 2000 May 12;275(19):14281–14286. doi: 10.1074/jbc.275.19.14281. [DOI] [PubMed] [Google Scholar]
- Jasinska R., Zhang Q. X., Pilquil C., Singh I., Xu J., Dewald J., Dillon D. A., Berthiaume L. G., Carman G. M., Waggoner D. W. Lipid phosphate phosphohydrolase-1 degrades exogenous glycerolipid and sphingolipid phosphate esters. Biochem J. 1999 Jun 15;340(Pt 3):677–686. [PMC free article] [PubMed] [Google Scholar]
- Jeckel D., Karrenbauer A., Burger K. N., van Meer G., Wieland F. Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol. 1992 Apr;117(2):259–267. doi: 10.1083/jcb.117.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karnam P., Standaert M. L., Galloway L., Farese R. V. Activation and translocation of Rho (and ADP ribosylation factor) by insulin in rat adipocytes. Apparent involvement of phosphatidylinositol 3-kinase. J Biol Chem. 1997 Mar 7;272(10):6136–6140. doi: 10.1074/jbc.272.10.6136. [DOI] [PubMed] [Google Scholar]
- Kawa S., Kimura S., Hakomori S., Igarashi Y. Inhibition of chemotactic motility and trans-endothelial migration of human neutrophils by sphingosine 1-phosphate. FEBS Lett. 1997 Dec 29;420(2-3):196–200. doi: 10.1016/s0014-5793(97)01516-0. [DOI] [PubMed] [Google Scholar]
- Kiss Z., Crilly K. S., Anderson W. H. Extracellular sphingosine 1-phosphate stimulates formation of ethanolamine from phosphatidylethanolamine: modulation of sphingosine 1-phosphate-induced mitogenesis by ethanolamine. Biochem J. 1997 Dec 1;328(Pt 2):383–391. doi: 10.1042/bj3280383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiss Z., Mukherjee J. J. Phosphocholine and sphingosine-1-phosphate synergistically stimulate DNA synthesis by a MAP kinase-dependent mechanism. FEBS Lett. 1997 Jul 21;412(1):197–200. doi: 10.1016/s0014-5793(97)00776-x. [DOI] [PubMed] [Google Scholar]
- Kleuser B., Cuvillier O., Spiegel S. 1Alpha,25-dihydroxyvitamin D3 inhibits programmed cell death in HL-60 cells by activation of sphingosine kinase. Cancer Res. 1998 May 1;58(9):1817–1824. [PubMed] [Google Scholar]
- Koch J., Gärtner S., Li C. M., Quintern L. E., Bernardo K., Levran O., Schnabel D., Desnick R. J., Schuchman E. H., Sandhoff K. Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase. Identification Of the first molecular lesion causing Farber disease. J Biol Chem. 1996 Dec 20;271(51):33110–33115. doi: 10.1074/jbc.271.51.33110. [DOI] [PubMed] [Google Scholar]
- Koch W. J., Hawes B. E., Allen L. F., Lefkowitz R. J. Direct evidence that Gi-coupled receptor stimulation of mitogen-activated protein kinase is mediated by G beta gamma activation of p21ras. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12706–12710. doi: 10.1073/pnas.91.26.12706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohama T., Olivera A., Edsall L., Nagiec M. M., Dickson R., Spiegel S. Molecular cloning and functional characterization of murine sphingosine kinase. J Biol Chem. 1998 Sep 11;273(37):23722–23728. doi: 10.1074/jbc.273.37.23722. [DOI] [PubMed] [Google Scholar]
- Kolesnick R. N., Hemer M. R. Characterization of a ceramide kinase activity from human leukemia (HL-60) cells. Separation from diacylglycerol kinase activity. J Biol Chem. 1990 Nov 5;265(31):18803–18808. [PubMed] [Google Scholar]
- Kolesnick R., Hannun Y. A. Ceramide and apoptosis. Trends Biochem Sci. 1999 Jun;24(6):224–227. doi: 10.1016/s0968-0004(99)01408-5. [DOI] [PubMed] [Google Scholar]
- Kon J., Sato K., Watanabe T., Tomura H., Kuwabara A., Kimura T., Tamama K., Ishizuka T., Murata N., Kanda T. Comparison of intrinsic activities of the putative sphingosine 1-phosphate receptor subtypes to regulate several signaling pathways in their cDNA-transfected Chinese hamster ovary cells. J Biol Chem. 1999 Aug 20;274(34):23940–23947. doi: 10.1074/jbc.274.34.23940. [DOI] [PubMed] [Google Scholar]
- Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
- Kozasa T., Jiang X., Hart M. J., Sternweis P. M., Singer W. D., Gilman A. G., Bollag G., Sternweis P. C. p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science. 1998 Jun 26;280(5372):2109–2111. doi: 10.1126/science.280.5372.2109. [DOI] [PubMed] [Google Scholar]
- Kozawa O., Suzuki A., Kaida T., Tokuda H., Uematsu T. Tumor necrosis factor-alpha autoregulates interleukin-6 synthesis via activation of protein kinase C. Function of sphingosine 1-phosphate and phosphatidylcholine-specific phospholipase C. J Biol Chem. 1997 Oct 3;272(40):25099–25104. doi: 10.1074/jbc.272.40.25099. [DOI] [PubMed] [Google Scholar]
- Kranenburg O., Verlaan I., Hordijk P. L., Moolenaar W. H. Gi-mediated activation of the Ras/MAP kinase pathway involves a 100 kDa tyrosine-phosphorylated Grb2 SH3 binding protein, but not Src nor Shc. EMBO J. 1997 Jun 2;16(11):3097–3105. doi: 10.1093/emboj/16.11.3097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee M. J., Evans M., Hla T. The inducible G protein-coupled receptor edg-1 signals via the G(i)/mitogen-activated protein kinase pathway. J Biol Chem. 1996 May 10;271(19):11272–11279. doi: 10.1074/jbc.271.19.11272. [DOI] [PubMed] [Google Scholar]
- Lee M. J., Thangada S., Claffey K. P., Ancellin N., Liu C. H., Kluk M., Volpi M., Sha'afi R. I., Hla T. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell. 1999 Oct 29;99(3):301–312. doi: 10.1016/s0092-8674(00)81661-x. [DOI] [PubMed] [Google Scholar]
- Lee M. J., Thangada S., Liu C. H., Thompson B. D., Hla T. Lysophosphatidic acid stimulates the G-protein-coupled receptor EDG-1 as a low affinity agonist. J Biol Chem. 1998 Aug 21;273(34):22105–22112. doi: 10.1074/jbc.273.34.22105. [DOI] [PubMed] [Google Scholar]
- Lee M. J., Van Brocklyn J. R., Thangada S., Liu C. H., Hand A. R., Menzeleev R., Spiegel S., Hla T. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science. 1998 Mar 6;279(5356):1552–1555. doi: 10.1126/science.279.5356.1552. [DOI] [PubMed] [Google Scholar]
- Lee O. H., Kim Y. M., Lee Y. M., Moon E. J., Lee D. J., Kim J. H., Kim K. W., Kwon Y. G. Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem Biophys Res Commun. 1999 Nov 2;264(3):743–750. doi: 10.1006/bbrc.1999.1586. [DOI] [PubMed] [Google Scholar]
- Levade T., Jaffrézou J. P. Signalling sphingomyelinases: which, where, how and why? Biochim Biophys Acta. 1999 Apr 19;1438(1):1–17. doi: 10.1016/s1388-1981(99)00038-4. [DOI] [PubMed] [Google Scholar]
- Lin F. T., Krueger K. M., Kendall H. E., Daaka Y., Fredericks Z. L., Pitcher J. A., Lefkowitz R. J. Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-arrestin1. J Biol Chem. 1997 Dec 5;272(49):31051–31057. doi: 10.1074/jbc.272.49.31051. [DOI] [PubMed] [Google Scholar]
- Liu B., Andrieu-Abadie N., Levade T., Zhang P., Obeid L. M., Hannun Y. A. Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alpha-induced cell death. J Biol Chem. 1998 May 1;273(18):11313–11320. doi: 10.1074/jbc.273.18.11313. [DOI] [PubMed] [Google Scholar]
- Liu B., Hannun Y. A. Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. J Biol Chem. 1997 Jun 27;272(26):16281–16287. doi: 10.1074/jbc.272.26.16281. [DOI] [PubMed] [Google Scholar]
- Lopez-Ilasaca M., Crespo P., Pellici P. G., Gutkind J. S., Wetzker R. Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase gamma. Science. 1997 Jan 17;275(5298):394–397. doi: 10.1126/science.275.5298.394. [DOI] [PubMed] [Google Scholar]
- Luttrell L. M., Daaka Y., Della Rocca G. J., Lefkowitz R. J. G protein-coupled receptors mediate two functionally distinct pathways of tyrosine phosphorylation in rat 1a fibroblasts. Shc phosphorylation and receptor endocytosis correlate with activation of Erk kinases. J Biol Chem. 1997 Dec 12;272(50):31648–31656. doi: 10.1074/jbc.272.50.31648. [DOI] [PubMed] [Google Scholar]
- Luttrell L. M., van Biesen T., Hawes B. E., Koch W. J., Touhara K., Lefkowitz R. J. G beta gamma subunits mediate mitogen-activated protein kinase activation by the tyrosine kinase insulin-like growth factor 1 receptor. J Biol Chem. 1995 Jul 14;270(28):16495–16498. doi: 10.1074/jbc.270.28.16495. [DOI] [PubMed] [Google Scholar]
- MacDonell K. L., Severson D. L., Giles W. R. Depression of excitability by sphingosine 1-phosphate in rat ventricular myocytes. Am J Physiol. 1998 Dec;275(6 Pt 2):H2291–H2299. doi: 10.1152/ajpheart.1998.275.6.H2291. [DOI] [PubMed] [Google Scholar]
- MacLennan A. J., Browe C. S., Gaskin A. A., Lado D. C., Shaw G. Cloning and characterization of a putative G-protein coupled receptor potentially involved in development. Mol Cell Neurosci. 1994 Jun;5(3):201–209. doi: 10.1006/mcne.1994.1024. [DOI] [PubMed] [Google Scholar]
- Machwate M., Rodan S. B., Rodan G. A., Harada S. I. Sphingosine kinase mediates cyclic AMP suppression of apoptosis in rat periosteal cells. Mol Pharmacol. 1998 Jul;54(1):70–77. doi: 10.1124/mol.54.1.70. [DOI] [PubMed] [Google Scholar]
- Mandala S. M., Thornton R., Tu Z., Kurtz M. B., Nickels J., Broach J., Menzeleev R., Spiegel S. Sphingoid base 1-phosphate phosphatase: a key regulator of sphingolipid metabolism and stress response. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):150–155. doi: 10.1073/pnas.95.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mao C., Wadleigh M., Jenkins G. M., Hannun Y. A., Obeid L. M. Identification and characterization of Saccharomyces cerevisiae dihydrosphingosine-1-phosphate phosphatase. J Biol Chem. 1997 Nov 7;272(45):28690–28694. doi: 10.1074/jbc.272.45.28690. [DOI] [PubMed] [Google Scholar]
- Mao J., Yuan H., Xie W., Wu D. Guanine nucleotide exchange factor GEF115 specifically mediates activation of Rho and serum response factor by the G protein alpha subunit Galpha13. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12973–12976. doi: 10.1073/pnas.95.22.12973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995 Jan 27;80(2):179–185. doi: 10.1016/0092-8674(95)90401-8. [DOI] [PubMed] [Google Scholar]
- Mathias S., Peña L. A., Kolesnick R. N. Signal transduction of stress via ceramide. Biochem J. 1998 Nov 1;335(Pt 3):465–480. doi: 10.1042/bj3350465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melendez A., Floto R. A., Gillooly D. J., Harnett M. M., Allen J. M. FcgammaRI coupling to phospholipase D initiates sphingosine kinase-mediated calcium mobilization and vesicular trafficking. J Biol Chem. 1998 Apr 17;273(16):9393–9402. doi: 10.1074/jbc.273.16.9393. [DOI] [PubMed] [Google Scholar]
- Meyer zu Heringdorf D., Lass H., Alemany R., Laser K. T., Neumann E., Zhang C., Schmidt M., Rauen U., Jakobs K. H., van Koppen C. J. Sphingosine kinase-mediated Ca2+ signalling by G-protein-coupled receptors. EMBO J. 1998 May 15;17(10):2830–2837. doi: 10.1093/emboj/17.10.2830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer zu Heringdorf D., Lass H., Kuchar I., Alemany R., Guo Y., Schmidt M., Jakobs K. H. Role of sphingosine kinase in Ca(2+) signalling by epidermal growth factor receptor. FEBS Lett. 1999 Nov 19;461(3):217–222. doi: 10.1016/s0014-5793(99)01463-5. [DOI] [PubMed] [Google Scholar]
- Miyake Y., Kozutsumi Y., Nakamura S., Fujita T., Kawasaki T. Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem Biophys Res Commun. 1995 Jun 15;211(2):396–403. doi: 10.1006/bbrc.1995.1827. [DOI] [PubMed] [Google Scholar]
- Nagiec M. M., Skrzypek M., Nagiec E. E., Lester R. L., Dickson R. C. The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases. J Biol Chem. 1998 Jul 31;273(31):19437–19442. doi: 10.1074/jbc.273.31.19437. [DOI] [PubMed] [Google Scholar]
- Needleman D. H., Aghdasi B., Seryshev A. B., Schroepfer G. J., Jr, Hamilton S. L. Modulation of skeletal muscle Ca2(+)-release channel activity by sphingosine. Am J Physiol. 1997 May;272(5 Pt 1):C1465–C1474. doi: 10.1152/ajpcell.1997.272.5.C1465. [DOI] [PubMed] [Google Scholar]
- Okamoto H., Takuwa N., Gonda K., Okazaki H., Chang K., Yatomi Y., Shigematsu H., Takuwa Y. EDG1 is a functional sphingosine-1-phosphate receptor that is linked via a Gi/o to multiple signaling pathways, including phospholipase C activation, Ca2+ mobilization, Ras-mitogen-activated protein kinase activation, and adenylate cyclase inhibition. J Biol Chem. 1998 Oct 16;273(42):27104–27110. doi: 10.1074/jbc.273.42.27104. [DOI] [PubMed] [Google Scholar]
- Okamoto H., Takuwa N., Yatomi Y., Gonda K., Shigematsu H., Takuwa Y. EDG3 is a functional receptor specific for sphingosine 1-phosphate and sphingosylphosphorylcholine with signaling characteristics distinct from EDG1 and AGR16. Biochem Biophys Res Commun. 1999 Jun 24;260(1):203–208. doi: 10.1006/bbrc.1999.0886. [DOI] [PubMed] [Google Scholar]
- Okazaki H., Ishizaka N., Sakurai T., Kurokawa K., Goto K., Kumada M., Takuwa Y. Molecular cloning of a novel putative G protein-coupled receptor expressed in the cardiovascular system. Biochem Biophys Res Commun. 1993 Feb 15;190(3):1104–1109. doi: 10.1006/bbrc.1993.1163. [DOI] [PubMed] [Google Scholar]
- Olivera A., Edsall L., Poulton S., Kazlauskas A., Spiegel S. Platelet-derived growth factor-induced activation of sphingosine kinase requires phosphorylation of the PDGF receptor tyrosine residue responsible for binding of PLCgamma. FASEB J. 1999 Sep;13(12):1593–1600. doi: 10.1096/fasebj.13.12.1593. [DOI] [PubMed] [Google Scholar]
- Olivera A., Kohama T., Edsall L., Nava V., Cuvillier O., Poulton S., Spiegel S. Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol. 1999 Nov 1;147(3):545–558. doi: 10.1083/jcb.147.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olivera A., Kohama T., Tu Z., Milstien S., Spiegel S. Purification and characterization of rat kidney sphingosine kinase. J Biol Chem. 1998 May 15;273(20):12576–12583. doi: 10.1074/jbc.273.20.12576. [DOI] [PubMed] [Google Scholar]
- Olivera A., Rosenthal J., Spiegel S. Sphingosine kinase from Swiss 3T3 fibroblasts: a convenient assay for the measurement of intracellular levels of free sphingoid bases. Anal Biochem. 1994 Dec;223(2):306–312. doi: 10.1006/abio.1994.1589. [DOI] [PubMed] [Google Scholar]
- Olivera A., Spiegel S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature. 1993 Oct 7;365(6446):557–560. doi: 10.1038/365557a0. [DOI] [PubMed] [Google Scholar]
- Orlati S., Hrelia S., Rugolo M. Pertussis toxin- and PMA-insensitive calcium mobilization by sphingosine in CFPAC-1 cells: evidence for a phosphatidic acid-dependent mechanism. Biochim Biophys Acta. 1997 Aug 21;1358(1):93–102. doi: 10.1016/s0167-4889(97)00047-5. [DOI] [PubMed] [Google Scholar]
- Orlati S., Porcelli A. M., Hrelia S., Lorenzini A., Rugolo M. Intracellular calcium mobilization and phospholipid degradation in sphingosylphosphorylcholine-stimulated human airway epithelial cells. Biochem J. 1998 Sep 15;334(Pt 3):641–649. doi: 10.1042/bj3340641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orlati S., Porcelli A. M., Hrelia S., Rugolo M. Sphingosylphosphorylcholine and sphingosine-1-phosphate mobilize cytosolic calcium through different mechanisms in human airway epithelial cells. Cell Calcium. 1998 Jun;23(6):387–394. doi: 10.1016/s0143-4160(98)90095-1. [DOI] [PubMed] [Google Scholar]
- Perry D. K., Hannun Y. A. The role of ceramide in cell signaling. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):233–243. doi: 10.1016/s0005-2760(98)00145-3. [DOI] [PubMed] [Google Scholar]
- Postma F. R., Jalink K., Hengeveld T., Moolenaar W. H. Sphingosine-1-phosphate rapidly induces Rho-dependent neurite retraction: action through a specific cell surface receptor. EMBO J. 1996 May 15;15(10):2388–2392. [PMC free article] [PubMed] [Google Scholar]
- Prieschl E. E., Csonga R., Novotny V., Kikuchi G. E., Baumruker T. The balance between sphingosine and sphingosine-1-phosphate is decisive for mast cell activation after Fc epsilon receptor I triggering. J Exp Med. 1999 Jul 5;190(1):1–8. doi: 10.1084/jem.190.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pyne S., Chapman J., Steele L., Pyne N. J. Sphingomyelin-derived lipids differentially regulate the extracellular signal-regulated kinase 2 (ERK-2) and c-Jun N-terminal kinase (JNK) signal cascades in airway smooth muscle. Eur J Biochem. 1996 May 1;237(3):819–826. doi: 10.1111/j.1432-1033.1996.0819p.x. [DOI] [PubMed] [Google Scholar]
- Pyne S., Pyne N. J. The differential regulation of cyclic AMP by sphingomyelin-derived lipids and the modulation of sphingolipid-stimulated extracellular signal regulated kinase-2 in airway smooth muscle. Biochem J. 1996 May 1;315(Pt 3):917–923. doi: 10.1042/bj3150917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qiao L., Kozikowski A. P., Olivera A., Spiegel S. Synthesis and evaluation of a photolyzable derivative of sphingosine 1-phosphate--caged SPP. Bioorg Med Chem Lett. 1998 Apr 7;8(7):711–714. doi: 10.1016/s0960-894x(98)00112-7. [DOI] [PubMed] [Google Scholar]
- Rakhit S., Conway A. M., Tate R., Bower T., Pyne N. J., Pyne S. Sphingosine 1-phosphate stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle. Role of endothelial differentiation gene 1, c-Src tyrosine kinase and phosphoinositide 3-kinase. Biochem J. 1999 Mar 15;338(Pt 3):643–649. [PMC free article] [PubMed] [Google Scholar]
- Rani C. S., Wang F., Fuior E., Berger A., Wu J., Sturgill T. W., Beitner-Johnson D., LeRoith D., Varticovski L., Spiegel S. Divergence in signal transduction pathways of platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) receptors. Involvement of sphingosine 1-phosphate in PDGF but not EGF signaling. J Biol Chem. 1997 Apr 18;272(16):10777–10783. doi: 10.1074/jbc.272.16.10777. [DOI] [PubMed] [Google Scholar]
- Rius R. A., Edsall L. C., Spiegel S. Activation of sphingosine kinase in pheochromocytoma PC12 neuronal cells in response to trophic factors. FEBS Lett. 1997 Nov 10;417(2):173–176. doi: 10.1016/s0014-5793(97)01277-5. [DOI] [PubMed] [Google Scholar]
- Rizza C., Leitinger N., Yue J., Fischer D. J., Wang D. A., Shih P. T., Lee H., Tigyi G., Berliner J. A. Lysophosphatidic acid as a regulator of endothelial/leukocyte interaction. Lab Invest. 1999 Oct;79(10):1227–1235. [PubMed] [Google Scholar]
- Saba J. D., Nara F., Bielawska A., Garrett S., Hannun Y. A. The BST1 gene of Saccharomyces cerevisiae is the sphingosine-1-phosphate lyase. J Biol Chem. 1997 Oct 17;272(42):26087–26090. doi: 10.1074/jbc.272.42.26087. [DOI] [PubMed] [Google Scholar]
- Sabała P., Wiktorek M., Czarny M., Chaban V., Barańska J. Sphingosine stimulates calcium mobilization and modulates calcium signals evoked by thapsigargin in glioma C6 cells. Acta Neurobiol Exp (Wars) 1996;56(2):507–513. doi: 10.55782/ane-1996-1154. [DOI] [PubMed] [Google Scholar]
- Sato K., Tomura H., Igarashi Y., Ui M., Okajima F. Exogenous sphingosine 1-phosphate induces neurite retraction possibly through a cell surface receptor in PC12 cells. Biochem Biophys Res Commun. 1997 Nov 17;240(2):329–334. doi: 10.1006/bbrc.1997.7666. [DOI] [PubMed] [Google Scholar]
- Sato K., Tomura H., Igarashi Y., Ui M., Okajima F. Possible involvement of cell surface receptors in sphingosine 1-phosphate-induced activation of extracellular signal-regulated kinase in C6 glioma cells. Mol Pharmacol. 1999 Jan;55(1):126–133. doi: 10.1124/mol.55.1.126. [DOI] [PubMed] [Google Scholar]
- Schaap D., van der Wal J., van Blitterswijk W. J. Consensus sequences for ATP-binding sites in protein kinases do not apply to diacylglycerol kinases. Biochem J. 1994 Dec 1;304(Pt 2):661–662. doi: 10.1042/bj3040661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shatrov V. A., Lehmann V., Chouaib S. Sphingosine-1-phosphate mobilizes intracellular calcium and activates transcription factor NF-kappa B in U937 cells. Biochem Biophys Res Commun. 1997 May 8;234(1):121–124. doi: 10.1006/bbrc.1997.6598. [DOI] [PubMed] [Google Scholar]
- Stam J. C., Michiels F., van der Kammen R. A., Moolenaar W. H., Collard J. G. Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO J. 1998 Jul 15;17(14):4066–4074. doi: 10.1093/emboj/17.14.4066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephens L., Smrcka A., Cooke F. T., Jackson T. R., Sternweis P. C., Hawkins P. T. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits. Cell. 1994 Apr 8;77(1):83–93. doi: 10.1016/0092-8674(94)90237-2. [DOI] [PubMed] [Google Scholar]
- Stoffel W., LeKim D., Sticht G. Distribution and properties of dihydrosphingosine-1-phosphate aldolase (sphinganine-1-phosphate alkanal-lyase). Hoppe Seylers Z Physiol Chem. 1969 Oct;350(10):1233–1241. doi: 10.1515/bchm2.1969.350.2.1233. [DOI] [PubMed] [Google Scholar]
- Stukey J., Carman G. M. Identification of a novel phosphatase sequence motif. Protein Sci. 1997 Feb;6(2):469–472. doi: 10.1002/pro.5560060226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Su Y., Rosenthal D., Smulson M., Spiegel S. Sphingosine 1-phosphate, a novel signaling molecule, stimulates DNA binding activity of AP-1 in quiescent Swiss 3T3 fibroblasts. J Biol Chem. 1994 Jun 10;269(23):16512–16517. [PubMed] [Google Scholar]
- Sugita M., Willians M., Dulaney J. T., Moser H. W. Ceramidase and ceramide synthesis in human kidney and cerebellum. Description of a new alkaline ceramidase. Biochim Biophys Acta. 1975 Jul 22;398(1):125–131. doi: 10.1016/0005-2760(75)90176-9. [DOI] [PubMed] [Google Scholar]
- Sundaram K. S., Lev M. Inhibition of sphingolipid synthesis by cycloserine in vitro and in vivo. J Neurochem. 1984 Feb;42(2):577–581. doi: 10.1111/j.1471-4159.1984.tb02716.x. [DOI] [PubMed] [Google Scholar]
- Tate R. J., Tolan D., Pyne S. Molecular cloning of magnesium-independent type 2 phosphatidic acid phosphatases from airway smooth muscle. Cell Signal. 1999 Jul;11(7):515–522. doi: 10.1016/s0898-6568(99)00028-5. [DOI] [PubMed] [Google Scholar]
- Tolan D., Conway A. M., Pyne N. J., Pyne S. Sphingosine prevents diacylglycerol signaling to mitogen-activated protein kinase in airway smooth muscle. Am J Physiol. 1997 Sep;273(3 Pt 1):C928–C936. doi: 10.1152/ajpcell.1997.273.3.C928. [DOI] [PubMed] [Google Scholar]
- Tolan D., Conway A. M., Rakhit S., Pyne N., Pyne S. Assessment of the extracellular and intracellular actions of sphingosine 1-phosphate by using the p42/p44 mitogen-activated protein kinase cascade as a model. Cell Signal. 1999 May;11(5):349–354. doi: 10.1016/s0898-6568(99)00005-4. [DOI] [PubMed] [Google Scholar]
- Tolan D., Conway A. M., Steele L., Pyne S., Pyne N. J. The identification of DL-threo dihydrosphingosine and sphingosine as novel inhibitors of extracellular signal-regulated kinase signalling in airway smooth muscle. Br J Pharmacol. 1996 Sep;119(2):185–186. doi: 10.1111/j.1476-5381.1996.tb15967.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Törnquist K., Saarinen P., Vainio M., Ahlström M. Sphingosine 1-phosphate mobilizes sequestered calcium, activates calcium entry, and stimulates deoxyribonucleic acid synthesis in thyroid FRTL-5 cells. Endocrinology. 1997 Oct;138(10):4049–4057. doi: 10.1210/endo.138.10.5422. [DOI] [PubMed] [Google Scholar]
- Ullman M. D., Radin N. S. The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver. J Biol Chem. 1974 Mar 10;249(5):1506–1512. [PubMed] [Google Scholar]
- Van Brocklyn J. R., Lee M. J., Menzeleev R., Olivera A., Edsall L., Cuvillier O., Thomas D. M., Coopman P. J., Thangada S., Liu C. H. Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J Cell Biol. 1998 Jul 13;142(1):229–240. doi: 10.1083/jcb.142.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Brocklyn J. R., Tu Z., Edsall L. C., Schmidt R. R., Spiegel S. Sphingosine 1-phosphate-induced cell rounding and neurite retraction are mediated by the G protein-coupled receptor H218. J Biol Chem. 1999 Feb 19;274(8):4626–4632. doi: 10.1074/jbc.274.8.4626. [DOI] [PubMed] [Google Scholar]
- Van Veldhoven P. P., Mannaerts G. P. Sphinganine 1-phosphate metabolism in cultured skin fibroblasts: evidence for the existence of a sphingosine phosphatase. Biochem J. 1994 May 1;299(Pt 3):597–601. doi: 10.1042/bj2990597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Veldhoven P. P., Mannaerts G. P. Subcellular localization and membrane topology of sphingosine-1-phosphate lyase in rat liver. J Biol Chem. 1991 Jul 5;266(19):12502–12507. [PubMed] [Google Scholar]
- Vunnam R. R., Radin N. S. Analogs of ceramide that inhibit glucocerebroside synthetase in mouse brain. Chem Phys Lipids. 1980 Apr;26(3):265–278. doi: 10.1016/0009-3084(80)90057-2. [DOI] [PubMed] [Google Scholar]
- Wang E., Norred W. P., Bacon C. W., Riley R. T., Merrill A. H., Jr Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J Biol Chem. 1991 Aug 5;266(22):14486–14490. [PubMed] [Google Scholar]
- Wang F., Nobes C. D., Hall A., Spiegel S. Sphingosine 1-phosphate stimulates rho-mediated tyrosine phosphorylation of focal adhesion kinase and paxillin in Swiss 3T3 fibroblasts. Biochem J. 1997 Jun 1;324(Pt 2):481–488. doi: 10.1042/bj3240481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang F., Nohara K., Olivera A., Thompson E. W., Spiegel S. Involvement of focal adhesion kinase in inhibition of motility of human breast cancer cells by sphingosine 1-phosphate. Exp Cell Res. 1999 Feb 25;247(1):17–28. doi: 10.1006/excr.1998.4327. [DOI] [PubMed] [Google Scholar]
- Wang F., Van Brocklyn J. R., Hobson J. P., Movafagh S., Zukowska-Grojec Z., Milstien S., Spiegel S. Sphingosine 1-phosphate stimulates cell migration through a G(i)-coupled cell surface receptor. Potential involvement in angiogenesis. J Biol Chem. 1999 Dec 10;274(50):35343–35350. doi: 10.1074/jbc.274.50.35343. [DOI] [PubMed] [Google Scholar]
- Windh R. T., Lee M. J., Hla T., An S., Barr A. J., Manning D. R. Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins. J Biol Chem. 1999 Sep 24;274(39):27351–27358. doi: 10.1074/jbc.274.39.27351. [DOI] [PubMed] [Google Scholar]
- Wu J., Spiegel S., Sturgill T. W. Sphingosine 1-phosphate rapidly activates the mitogen-activated protein kinase pathway by a G protein-dependent mechanism. J Biol Chem. 1995 May 12;270(19):11484–11488. doi: 10.1074/jbc.270.19.11484. [DOI] [PubMed] [Google Scholar]
- Xia P., Gamble J. R., Rye K. A., Wang L., Hii C. S., Cockerill P., Khew-Goodall Y., Bert A. G., Barter P. J., Vadas M. A. Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14196–14201. doi: 10.1073/pnas.95.24.14196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xia P., Wang L., Gamble J. R., Vadas M. A. Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells. J Biol Chem. 1999 Nov 26;274(48):34499–34505. doi: 10.1074/jbc.274.48.34499. [DOI] [PubMed] [Google Scholar]
- Yamazaki Y., Kon J., Sato K., Tomura H., Sato M., Yoneya T., Okazaki H., Okajima F., Ohta H. Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway. Biochem Biophys Res Commun. 2000 Feb 16;268(2):583–589. doi: 10.1006/bbrc.2000.2162. [DOI] [PubMed] [Google Scholar]
- Yang L., Yatomi Y., Hisano N., Qi R., Asazuma N., Satoh K., Igarashi Y., Ozaki Y., Kume S. Activation of protein-tyrosine kinase Syk in human platelets stimulated with lysophosphatidic acid or sphingosine 1-phosphate. Biochem Biophys Res Commun. 1996 Dec 13;229(2):440–444. doi: 10.1006/bbrc.1996.1822. [DOI] [PubMed] [Google Scholar]
- Yatomi Y., Igarashi Y., Yang L., Hisano N., Qi R., Asazuma N., Satoh K., Ozaki Y., Kume S. Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J Biochem. 1997 May;121(5):969–973. doi: 10.1093/oxfordjournals.jbchem.a021681. [DOI] [PubMed] [Google Scholar]
- Yatomi Y., Ruan F., Ohta J., Welch R. J., Hakomori S., Igarashi Y. Quantitative measurement of sphingosine 1-phosphate in biological samples by acylation with radioactive acetic anhydride. Anal Biochem. 1995 Sep 20;230(2):315–320. doi: 10.1006/abio.1995.1480. [DOI] [PubMed] [Google Scholar]
- Zehavi U. Synthesis of potentially caged sphingolipids, possible precursors of cellular modulators and second messengers. Chem Phys Lipids. 1997 Nov 19;90(1-2):55–61. doi: 10.1016/s0009-3084(97)00083-2. [DOI] [PubMed] [Google Scholar]
- Zhang H., Desai N. N., Murphey J. M., Spiegel S. Increases in phosphatidic acid levels accompany sphingosine-stimulated proliferation of quiescent Swiss 3T3 cells. J Biol Chem. 1990 Dec 5;265(34):21309–21316. [PubMed] [Google Scholar]
- Zhang H., Desai N. N., Olivera A., Seki T., Brooker G., Spiegel S. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol. 1991 Jul;114(1):155–167. doi: 10.1083/jcb.114.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Q. X., Pilquil C. S., Dewald J., Berthiaume L. G., Brindley D. N. Identification of structurally important domains of lipid phosphate phosphatase-1: implications for its sites of action. Biochem J. 2000 Jan 15;345(Pt 2):181–184. [PMC free article] [PubMed] [Google Scholar]
- Zhou J., Saba J. D. Identification of the first mammalian sphingosine phosphate lyase gene and its functional expression in yeast. Biochem Biophys Res Commun. 1998 Jan 26;242(3):502–507. doi: 10.1006/bbrc.1997.7993. [DOI] [PubMed] [Google Scholar]
- Zondag G. C., Postma F. R., Etten I. V., Verlaan I., Moolenaar W. H. Sphingosine 1-phosphate signalling through the G-protein-coupled receptor Edg-1. Biochem J. 1998 Mar 1;330(Pt 2):605–609. doi: 10.1042/bj3300605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zwick E., Hackel P. O., Prenzel N., Ullrich A. The EGF receptor as central transducer of heterologous signalling systems. Trends Pharmacol Sci. 1999 Oct;20(10):408–412. doi: 10.1016/s0165-6147(99)01373-5. [DOI] [PubMed] [Google Scholar]
- van Veldhoven P. P., Mannaerts G. P. Sphingosine-phosphate lyase. Adv Lipid Res. 1993;26:69–98. [PubMed] [Google Scholar]