Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jul 15;349(Pt 2):455–461. doi: 10.1042/0264-6021:3490455

Glutathione peroxidase-1 but not -4 is involved in the regulation of cellular 5-lipoxygenase activity in monocytic cells.

D Straif 1, O Werz 1, R Kellner 1, U Bahr 1, D Steinhilber 1
PMCID: PMC1221168  PMID: 10880344

Abstract

In contrast to neutrophils or B-lymphocytes, cells of the monocytic lineage like rat macrophages, human peripheral blood monocytes and Mono Mac 6 cells contain a strong inhibitor of 5-lipoxygenase (5-LO) activity, which scavenges hydroperoxides and inhibits 5-LO activity in broken-cell preparations in the absence of exogenously added thiols. Chromatographic purification of the inhibitor from the human monocytic cell line Mono Mac 6 and amino acid sequence analysis revealed that the inhibitory factor is glutathione peroxidase-1 (GPx-1). In contrast to the peroxidase activity of GPx-1, 5-LO inhibition by GPx-1 was supported by beta-mercaptoethanol and there was no absolute requirement for millimolar concentrations of glutathione or dithiothreitol. These cofactor characteristics suggest that both activities address distinct catalytic properties of GPx-1. 5-LO inhibition by GPx-1 was not due to direct GPx-5-LO protein-protein interactions, since GPx-1 did not bind to immobilized 5-LO. Interestingly, 5-LO derived from granulocytes was significantly more resistant against GPx-1 inhibition than B-lymphocytic 5-LO, which correlates with the respective cellular 5-LO activities. In summary, the data suggest that, in addition to previously reported phospholipid hydroperoxide glutathione peroxidase (GPx-4), GPx-1 is an efficient inhibitor of 5-LO even at low thiol concentrations, and is involved in the regulation of cellular 5-LO activity in various cell types.

Full Text

The Full Text of this article is available as a PDF (171.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett C. F., Chiang M. Y., Monia B. P., Crooke S. T. Regulation of 5-lipoxygenase and 5-lipoxygenase-activating protein expression in HL-60 cells. Biochem J. 1993 Jan 1;289(Pt 1):33–39. doi: 10.1042/bj2890033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Björnstedt M., Hamberg M., Kumar S., Xue J., Holmgren A. Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. J Biol Chem. 1995 May 19;270(20):11761–11764. doi: 10.1074/jbc.270.20.11761. [DOI] [PubMed] [Google Scholar]
  3. Breitman T. R., Collins S. J., Keene B. R. Replacement of serum by insulin and transferrin supports growth and differentiation of the human promyelocytic cell line, HL-60. Exp Cell Res. 1980 Apr;126(2):494–498. doi: 10.1016/0014-4827(80)90296-7. [DOI] [PubMed] [Google Scholar]
  4. Brungs M., Rådmark O., Samuelsson B., Steinhilber D. Sequential induction of 5-lipoxygenase gene expression and activity in Mono Mac 6 cells by transforming growth factor beta and 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):107–111. doi: 10.1073/pnas.92.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cha M. K., Kim I. H. Glutathione-linked thiol peroxidase activity of human serum albumin: a possible antioxidant role of serum albumin in blood plasma. Biochem Biophys Res Commun. 1996 May 15;222(2):619–625. doi: 10.1006/bbrc.1996.0793. [DOI] [PubMed] [Google Scholar]
  6. Charng M. J., Zhang D., Kinnunen P., Schneider M. D. A novel protein distinguishes between quiescent and activated forms of the type I transforming growth factor beta receptor. J Biol Chem. 1998 Apr 17;273(16):9365–9368. doi: 10.1074/jbc.273.16.9365. [DOI] [PubMed] [Google Scholar]
  7. Coffey M. J., Wilcoxen S. E., Sporn P. H., Peters-Golden M. Regulation of 5-lipoxygenase activity in mononuclear phagocytes: characterization of an endogenous cytosolic inhibitor. Prostaglandins Other Lipid Mediat. 1998 Jun;56(2-3):103–117. doi: 10.1016/s0090-6980(98)00046-x. [DOI] [PubMed] [Google Scholar]
  8. Coffey M., Peters-Golden M., Fantone J. C., 3rd, Sporn P. H. Membrane association of active 5-lipoxygenase in resting cells. Evidence for novel regulation of the enzyme in the rat alveolar macrophage. J Biol Chem. 1992 Jan 5;267(1):570–576. [PubMed] [Google Scholar]
  9. Epp O., Ladenstein R., Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem. 1983 Jun 1;133(1):51–69. doi: 10.1111/j.1432-1033.1983.tb07429.x. [DOI] [PubMed] [Google Scholar]
  10. Flohé L., Günzler W., Jung G., Schaich E., Schneider F. Glutathion-Peroxidase. II. Substratspezifität und Hemmbarkeit durch Substratanaloge. Hoppe Seylers Z Physiol Chem. 1971 Feb;352(2):159–169. [PubMed] [Google Scholar]
  11. Ford-Hutchinson A. W., Gresser M., Young R. N. 5-Lipoxygenase. Annu Rev Biochem. 1994;63:383–417. doi: 10.1146/annurev.bi.63.070194.002123. [DOI] [PubMed] [Google Scholar]
  12. Gettins P., Dyal D., Crews B. Selenium-dependent glutathione peroxidases from ovine and bovine erythrocytes occur as longer chain forms than previously recognized. Arch Biochem Biophys. 1992 May 1;294(2):511–518. doi: 10.1016/0003-9861(92)90718-c. [DOI] [PubMed] [Google Scholar]
  13. Huang H. S., Chen C. J., Lu H. S., Chang W. C. Identification of a lipoxygenase inhibitor in A431 cells as a phospholipid hydroperoxide glutathione peroxidase. FEBS Lett. 1998 Mar 6;424(1-2):22–26. doi: 10.1016/s0014-5793(98)00130-6. [DOI] [PubMed] [Google Scholar]
  14. Imai H., Narashima K., Arai M., Sakamoto H., Chiba N., Nakagawa Y. Suppression of leukotriene formation in RBL-2H3 cells that overexpressed phospholipid hydroperoxide glutathione peroxidase. J Biol Chem. 1998 Jan 23;273(4):1990–1997. doi: 10.1074/jbc.273.4.1990. [DOI] [PubMed] [Google Scholar]
  15. Kargman S., Prasit P., Evans J. F. Translocation of HL-60 cell 5-lipoxygenase. Inhibition of A23187- or N-formyl-methionyl-leucyl-phenylalanine-induced translocation by indole and quinoline leukotriene synthesis inhibitors. J Biol Chem. 1991 Dec 15;266(35):23745–23752. [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Mullenbach G. T., Tabrizi A., Irvine B. D., Bell G. I., Hallewell R. A. Sequence of a cDNA coding for human glutathione peroxidase confirms TGA encodes active site selenocysteine. Nucleic Acids Res. 1987 Jul 10;15(13):5484–5484. doi: 10.1093/nar/15.13.5484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Provost P., Samuelsson B., Rådmark O. Interaction of 5-lipoxygenase with cellular proteins. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1881–1885. doi: 10.1073/pnas.96.5.1881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reid G. K., Kargman S., Vickers P. J., Mancini J. A., Léveillé C., Ethier D., Miller D. K., Gillard J. W., Dixon R. A., Evans J. F. Correlation between expression of 5-lipoxygenase-activating protein, 5-lipoxygenase, and cellular leukotriene synthesis. J Biol Chem. 1990 Nov 15;265(32):19818–19823. [PubMed] [Google Scholar]
  20. Samuelsson B., Dahlén S. E., Lindgren J. A., Rouzer C. A., Serhan C. N. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987 Sep 4;237(4819):1171–1176. doi: 10.1126/science.2820055. [DOI] [PubMed] [Google Scholar]
  21. Steinhilber D., Rådmark O., Samuelsson B. Transforming growth factor beta upregulates 5-lipoxygenase activity during myeloid cell maturation. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5984–5988. doi: 10.1073/pnas.90.13.5984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tappel A. L. Glutathione peroxidase and hydroperoxides. Methods Enzymol. 1978;52:506–513. doi: 10.1016/s0076-6879(78)52055-7. [DOI] [PubMed] [Google Scholar]
  23. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wendel A. Glutathione peroxidase. Methods Enzymol. 1981;77:325–333. doi: 10.1016/s0076-6879(81)77046-0. [DOI] [PubMed] [Google Scholar]
  25. Werz O., Brungs M., Steinhilber D. Purification of transforming growth factor beta 1 from human platelets. Pharmazie. 1996 Nov;51(11):893–896. [PubMed] [Google Scholar]
  26. Werz O., Steinhilber D. Selenium-dependent peroxidases suppress 5-lipoxygenase activity in B-lymphocytes and immature myeloid cells. The presence of peroxidase-insensitive 5-lipoxygenase activity in differentiated myeloid cells. Eur J Biochem. 1996 Nov 15;242(1):90–97. doi: 10.1111/j.1432-1033.1996.0090r.x. [DOI] [PubMed] [Google Scholar]
  27. Werz O., Szellas D., Henseler M., Steinhilber D. Nonredox 5-lipoxygenase inhibitors require glutathione peroxidase for efficient inhibition of 5-lipoxygenase activity. Mol Pharmacol. 1998 Aug;54(2):445–451. doi: 10.1124/mol.54.2.445. [DOI] [PubMed] [Google Scholar]
  28. Woods J. W., Evans J. F., Ethier D., Scott S., Vickers P. J., Hearn L., Heibein J. A., Charleson S., Singer I. I. 5-lipoxygenase and 5-lipoxygenase-activating protein are localized in the nuclear envelope of activated human leukocytes. J Exp Med. 1993 Dec 1;178(6):1935–1946. doi: 10.1084/jem.178.6.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zhang Y. Y., Lind B., Rådmark O., Samuelsson B. Iron content of human 5-lipoxygenase, effects of mutations regarding conserved histidine residues. J Biol Chem. 1993 Feb 5;268(4):2535–2541. [PubMed] [Google Scholar]
  30. Ziegler-Heitbrock H. W., Thiel E., Fütterer A., Herzog V., Wirtz A., Riethmüller G. Establishment of a human cell line (Mono Mac 6) with characteristics of mature monocytes. Int J Cancer. 1988 Mar 15;41(3):456–461. doi: 10.1002/ijc.2910410324. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES