Abstract
The effect of 12-hydroxyeicosatetraenoic acid (12-HETE), an arachidonic acid metabolite of 12-lipoxygenase, to activate p21(Rac/Cdc42)-activated kinase (PAK1) was studied in a Chinese hamster ovary fibroblast cell line overexpressing the rat vascular type-1a angiotensin II receptor (CHO-AT(1a)). 12-HETE (0.1 microM) treatment induced a time-dependent activation of PAK1, with a peak effect at 10 min (335 +/- 16% of control; n=3, P<0.001). The stimulatory effect of 12-HETE on PAK1 activity was dose-dependent, with the maximal activation at 0.01 microM (350+/-15% of control; n=3, P<0.001). A PAK1 fragment encoding the Cdc42/Rac binding domain (amino acid residues 67-150 of hPAK1 termed PBD), was transfected into CHO-AT(1a) cells. PBD transfection markedly reduced 12-HETE-induced PAK1 activation. Furthermore, transfection of dominant negative Cdc42 and Rac1 inhibited 12-HETE-induced PAK1, strongly suggesting that Cdc42 and Rac1 are the upstream activators of 12-HETE-induced PAK1 activation. Low concentrations (1.5 microM) of LY294002, a highly specific inhibitor of phosphoinositide 3-kinase (PI-3K), abolished 12-HETE-induced PAK1 activation, suggesting that PI-3K activation is upstream of 12-HETE-induced PAK1 activation. Transfection of dominant negative PAK1 blocked 12-HETE-induced PAK1, cJun N-terminal kinase (JNK1) and extracellular-signal-regulated kinase (ERK) activity, while transfection of constitutively active PAK1 stimulated PAK1, JNK1 and ERK activity, suggesting that PAK1 is an upstream activator of 12-HETE-induced JNK1 and ERK activation in these cells. We conclude that 12-HETE can activate Cdc42, Rac1 and PI-3K, which then participate as upstream signalling molecules for PAK1 and JNK1 activation.
Full Text
The Full Text of this article is available as a PDF (231.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bagrodia S., Dérijard B., Davis R. J., Cerione R. A. Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. J Biol Chem. 1995 Nov 24;270(47):27995–27998. doi: 10.1074/jbc.270.47.27995. [DOI] [PubMed] [Google Scholar]
- Bagrodia S., Taylor S. J., Creasy C. L., Chernoff J., Cerione R. A. Identification of a mouse p21Cdc42/Rac activated kinase. J Biol Chem. 1995 Sep 29;270(39):22731–22737. doi: 10.1074/jbc.270.39.22731. [DOI] [PubMed] [Google Scholar]
- Bokoch G. M., Reilly A. M., Daniels R. H., King C. C., Olivera A., Spiegel S., Knaus U. G. A GTPase-independent mechanism of p21-activated kinase activation. Regulation by sphingosine and other biologically active lipids. J Biol Chem. 1998 Apr 3;273(14):8137–8144. doi: 10.1074/jbc.273.14.8137. [DOI] [PubMed] [Google Scholar]
- Bokoch G. M., Wang Y., Bohl B. P., Sells M. A., Quilliam L. A., Knaus U. G. Interaction of the Nck adapter protein with p21-activated kinase (PAK1). J Biol Chem. 1996 Oct 18;271(42):25746–25749. doi: 10.1074/jbc.271.42.25746. [DOI] [PubMed] [Google Scholar]
- Burbelo P. D., Drechsel D., Hall A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J Biol Chem. 1995 Dec 8;270(49):29071–29074. doi: 10.1074/jbc.270.49.29071. [DOI] [PubMed] [Google Scholar]
- Coso O. A., Chiariello M., Yu J. C., Teramoto H., Crespo P., Xu N., Miki T., Gutkind J. S. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell. 1995 Jun 30;81(7):1137–1146. doi: 10.1016/s0092-8674(05)80018-2. [DOI] [PubMed] [Google Scholar]
- Coso O. A., Chiariello M., Yu J. C., Teramoto H., Crespo P., Xu N., Miki T., Gutkind J. S. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell. 1995 Jun 30;81(7):1137–1146. doi: 10.1016/s0092-8674(05)80018-2. [DOI] [PubMed] [Google Scholar]
- Freeman J. L., Abo A., Lambeth J. D. Rac "insert region" is a novel effector region that is implicated in the activation of NADPH oxidase, but not PAK65. J Biol Chem. 1996 Aug 16;271(33):19794–19801. doi: 10.1074/jbc.271.33.19794. [DOI] [PubMed] [Google Scholar]
- Frost J. A., Steen H., Shapiro P., Lewis T., Ahn N., Shaw P. E., Cobb M. H. Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J. 1997 Nov 3;16(21):6426–6438. doi: 10.1093/emboj/16.21.6426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galisteo M. L., Chernoff J., Su Y. C., Skolnik E. Y., Schlessinger J. The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. J Biol Chem. 1996 Aug 30;271(35):20997–21000. doi: 10.1074/jbc.271.35.20997. [DOI] [PubMed] [Google Scholar]
- Keely P. J., Westwick J. K., Whitehead I. P., Der C. J., Parise L. V. Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature. 1997 Dec 11;390(6660):632–636. doi: 10.1038/37656. [DOI] [PubMed] [Google Scholar]
- Knaus U. G., Morris S., Dong H. J., Chernoff J., Bokoch G. M. Regulation of human leukocyte p21-activated kinases through G protein--coupled receptors. Science. 1995 Jul 14;269(5221):221–223. doi: 10.1126/science.7618083. [DOI] [PubMed] [Google Scholar]
- Knaus U. G., Wang Y., Reilly A. M., Warnock D., Jackson J. H. Structural requirements for PAK activation by Rac GTPases. J Biol Chem. 1998 Aug 21;273(34):21512–21518. doi: 10.1074/jbc.273.34.21512. [DOI] [PubMed] [Google Scholar]
- Manser E., Chong C., Zhao Z. S., Leung T., Michael G., Hall C., Lim L. Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family. J Biol Chem. 1995 Oct 20;270(42):25070–25078. doi: 10.1074/jbc.270.42.25070. [DOI] [PubMed] [Google Scholar]
- Manser E., Leung T., Salihuddin H., Zhao Z. S., Lim L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature. 1994 Jan 6;367(6458):40–46. doi: 10.1038/367040a0. [DOI] [PubMed] [Google Scholar]
- Martin G. A., Bollag G., McCormick F., Abo A. A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20. EMBO J. 1995 May 1;14(9):1970–1978. doi: 10.1002/j.1460-2075.1995.tb07189.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merritt S. E., Mata M., Nihalani D., Zhu C., Hu X., Holzman L. B. The mixed lineage kinase DLK utilizes MKK7 and not MKK4 as substrate. J Biol Chem. 1999 Apr 9;274(15):10195–10202. doi: 10.1074/jbc.274.15.10195. [DOI] [PubMed] [Google Scholar]
- Minden A., Lin A., Claret F. X., Abo A., Karin M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell. 1995 Jun 30;81(7):1147–1157. doi: 10.1016/s0092-8674(05)80019-4. [DOI] [PubMed] [Google Scholar]
- Minden A., Lin A., Claret F. X., Abo A., Karin M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell. 1995 Jun 30;81(7):1147–1157. doi: 10.1016/s0092-8674(05)80019-4. [DOI] [PubMed] [Google Scholar]
- Nagata K. i., Puls A., Futter C., Aspenstrom P., Schaefer E., Nakata T., Hirokawa N., Hall A. The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3. EMBO J. 1998 Jan 2;17(1):149–158. doi: 10.1093/emboj/17.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nimnual A. S., Yatsula B. A., Bar-Sagi D. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science. 1998 Jan 23;279(5350):560–563. doi: 10.1126/science.279.5350.560. [DOI] [PubMed] [Google Scholar]
- Rudel T., Bokoch G. M. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science. 1997 Jun 6;276(5318):1571–1574. doi: 10.1126/science.276.5318.1571. [DOI] [PubMed] [Google Scholar]
- Teramoto H., Coso O. A., Miyata H., Igishi T., Miki T., Gutkind J. S. Signaling from the small GTP-binding proteins Rac1 and Cdc42 to the c-Jun N-terminal kinase/stress-activated protein kinase pathway. A role for mixed lineage kinase 3/protein-tyrosine kinase 1, a novel member of the mixed lineage kinase family. J Biol Chem. 1996 Nov 1;271(44):27225–27228. doi: 10.1074/jbc.271.44.27225. [DOI] [PubMed] [Google Scholar]
- Teramoto H., Coso O. A., Miyata H., Igishi T., Miki T., Gutkind J. S. Signaling from the small GTP-binding proteins Rac1 and Cdc42 to the c-Jun N-terminal kinase/stress-activated protein kinase pathway. A role for mixed lineage kinase 3/protein-tyrosine kinase 1, a novel member of the mixed lineage kinase family. J Biol Chem. 1996 Nov 1;271(44):27225–27228. doi: 10.1074/jbc.271.44.27225. [DOI] [PubMed] [Google Scholar]
- Teutsch B., Bihoreaú C., Monnot C., Bernstein K. E., Murphy T. J., Alexander R. W., Corvol P., Clauser E. A recombinant rat vascular AT1 receptor confers growth properties to angiotensin II in Chinese hamster ovary cells. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1381–1388. doi: 10.1016/0006-291x(92)90455-t. [DOI] [PubMed] [Google Scholar]
- Tsakiridis T., Taha C., Grinstein S., Klip A. Insulin activates a p21-activated kinase in muscle cells via phosphatidylinositol 3-kinase. J Biol Chem. 1996 Aug 16;271(33):19664–19667. doi: 10.1074/jbc.271.33.19664. [DOI] [PubMed] [Google Scholar]
- Welch H., Eguinoa A., Stephens L. R., Hawkins P. T. Protein kinase B and rac are activated in parallel within a phosphatidylinositide 3OH-kinase-controlled signaling pathway. J Biol Chem. 1998 May 1;273(18):11248–11256. doi: 10.1074/jbc.273.18.11248. [DOI] [PubMed] [Google Scholar]
- Wen Y., Nadler J. L., Gonzales N., Scott S., Clauser E., Natarajan R. Mechanisms of ANG II-induced mitogenic responses: role of 12-lipoxygenase and biphasic MAP kinase. Am J Physiol. 1996 Oct;271(4 Pt 1):C1212–C1220. doi: 10.1152/ajpcell.1996.271.4.C1212. [DOI] [PubMed] [Google Scholar]
- Wen Y., Scott S., Liu Y., Gonzales N., Nadler J. L. Evidence that angiotensin II and lipoxygenase products activate c-Jun NH2-terminal kinase. Circ Res. 1997 Nov;81(5):651–655. doi: 10.1161/01.res.81.5.651. [DOI] [PubMed] [Google Scholar]
- Zhang S., Han J., Sells M. A., Chernoff J., Knaus U. G., Ulevitch R. J., Bokoch G. M. Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J Biol Chem. 1995 Oct 13;270(41):23934–23936. doi: 10.1074/jbc.270.41.23934. [DOI] [PubMed] [Google Scholar]