Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jul 15;349(Pt 2):519–526. doi: 10.1042/0264-6021:3490519

Kinetics and control of oxidative phosphorylation in rat liver mitochondria after chronic ethanol feeding.

A Marcinkeviciute 1, V Mildaziene 1, S Crumm 1, O Demin 1, J B Hoek 1, B Kholodenko 1
PMCID: PMC1221175  PMID: 10880351

Abstract

Changes in the kinetics and regulation of oxidative phosphorylation were characterized in isolated rat liver mitochondria after 2 months of ethanol consumption. Mitochondrial energy metabolism was conceptually divided into three groups of reactions, either producing protonmotive force (Deltap) (the respiratory subsystem) or consuming it (the phosphorylation subsystem and the proton leak). Manifestation of ethanol-induced mitochondrial malfunctioning of the respiratory subsystem was observed with various substrates; the respiration rate in State 3 was inhibited by 27+/-4% with succinate plus amytal, by 20+/-4% with glutamate plus malate, and by 17+/-2% with N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate. The inhibition of the respiratory activity correlated with the lower activities of cytochrome c oxidase, the bc(1) complex, and the ATP synthase in mitochondria of ethanol-fed rats. The block of reactions consuming the Deltap to produce ATP (the phosphorylating subsystem) was suppressed after 2 months of ethanol feeding, whereas the mitochondrial proton leak was not affected. The contributions of Deltap supply (the respiratory subsystem) and Deltap demand (the phosphorylation and the proton leak) to the control of the respiratory flux were quantified as the control coefficients of these subsystems. In State 3, the distribution of control exerted by different reaction blocks over respiratory flux was not significantly affected by ethanol diet, despite the marked changes in the kinetics of individual functional units of mitochondrial oxidative phosphorylation. This suggests the operation of compensatory mechanisms, when control redistributes among the different components within the same subsystem.

Full Text

The Full Text of this article is available as a PDF (161.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arteel G. E., Iimuro Y., Yin M., Raleigh J. A., Thurman R. G. Chronic enteral ethanol treatment causes hypoxia in rat liver tissue in vivo. Hepatology. 1997 Apr;25(4):920–926. doi: 10.1002/hep.510250422. [DOI] [PubMed] [Google Scholar]
  2. Bernstein J. D., Penniall R. Effects of chronic ethanol treatment on rat liver mitochondrial protein synthesis. Alcohol Clin Exp Res. 1978 Jul;2(3):301–310. doi: 10.1111/j.1530-0277.1978.tb05818.x. [DOI] [PubMed] [Google Scholar]
  3. Bernstein J. D., Penniall R. Effects of chronic ethanol treatment upon rat liver mitochondria. Biochem Pharmacol. 1978;27(19):2337–2342. doi: 10.1016/0006-2952(78)90141-7. [DOI] [PubMed] [Google Scholar]
  4. Brand M. D., Hafner R. P., Brown G. C. Control of respiration in non-phosphorylating mitochondria is shared between the proton leak and the respiratory chain. Biochem J. 1988 Oct 15;255(2):535–539. [PMC free article] [PubMed] [Google Scholar]
  5. Brand M. D., Kesseler A. Control analysis of energy metabolism in mitochondria. Biochem Soc Trans. 1995 May;23(2):371–376. doi: 10.1042/bst0230371. [DOI] [PubMed] [Google Scholar]
  6. Brand M. D. Top down metabolic control analysis. J Theor Biol. 1996 Oct 7;182(3):351–360. doi: 10.1006/jtbi.1996.0174. [DOI] [PubMed] [Google Scholar]
  7. Brown G. C., Hafner R. P., Brand M. D. A 'top-down' approach to the determination of control coefficients in metabolic control theory. Eur J Biochem. 1990 Mar 10;188(2):321–325. doi: 10.1111/j.1432-1033.1990.tb15406.x. [DOI] [PubMed] [Google Scholar]
  8. Cahill A., Baio D. L., Ivester P., Cunningham C. C. Differential effects of chronic ethanol consumption on hepatic mitochondrial and cytoplasmic ribosomes. Alcohol Clin Exp Res. 1996 Nov;20(8):1362–1367. doi: 10.1111/j.1530-0277.1996.tb01135.x. [DOI] [PubMed] [Google Scholar]
  9. Cardellach F., Taraschi T. F., Ellingson J. S., Stubbs C. D., Rubin E., Hoek J. B. Maintenance of structural and functional characteristics of skeletal-muscle mitochondria and sarcoplasmic-reticular membranes after chronic ethanol treatment. Biochem J. 1991 Mar 1;274(Pt 2):565–573. doi: 10.1042/bj2740565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cederbaum A. I., Lieber C. S., Rubin E. Effects of chronic ethanol treatment of mitochondrial functions damage to coupling site I. Arch Biochem Biophys. 1974 Dec;165(2):560–569. doi: 10.1016/0003-9861(74)90283-5. [DOI] [PubMed] [Google Scholar]
  11. Cederbaum A. I., Lieber C. S., Toth A., Beattie D. S., Rubin E. Effects of ethanol and fat on the transport of reducing equivalents into rat liver mitochondria. J Biol Chem. 1973 Jul 25;248(14):4977–4986. [PubMed] [Google Scholar]
  12. Coleman W. B., Cunningham C. C. Effect of chronic ethanol consumption on hepatic mitochondrial transcription and translation. Biochim Biophys Acta. 1991 Jun 17;1058(2):178–186. doi: 10.1016/s0005-2728(05)80235-x. [DOI] [PubMed] [Google Scholar]
  13. Cunningham C. C., Coleman W. B., Spach P. I. The effects of chronic ethanol consumption on hepatic mitochondrial energy metabolism. Alcohol Alcohol. 1990;25(2-3):127–136. doi: 10.1093/oxfordjournals.alcalc.a044987. [DOI] [PubMed] [Google Scholar]
  14. Cunningham C. C., Kouri D. L., Beeker K. R., Spach P. I. Comparison of effects of long-term ethanol consumption on the heart and liver of the rat. Alcohol Clin Exp Res. 1989 Feb;13(1):58–65. doi: 10.1111/j.1530-0277.1989.tb00284.x. [DOI] [PubMed] [Google Scholar]
  15. Cunningham C. C., Spach P. I. Alcoholism and myocardial energy metabolism. Alcohol Clin Exp Res. 1994 Feb;18(1):132–137. doi: 10.1111/j.1530-0277.1994.tb00892.x. [DOI] [PubMed] [Google Scholar]
  16. DeCarli L. M., Lieber C. S. Fatty liver in the rat after prolonged intake of ethanol with a nutritionally adequate new liquid diet. J Nutr. 1967 Mar;91(3):331–336. doi: 10.1093/jn/91.3_Suppl.331. [DOI] [PubMed] [Google Scholar]
  17. Demin O. V., Kholodenko B. N., Skulachev V. P. A model of O2.-generation in the complex III of the electron transport chain. Mol Cell Biochem. 1998 Jul;184(1-2):21–33. [PubMed] [Google Scholar]
  18. Hafner R. P., Brown G. C., Brand M. D. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. Eur J Biochem. 1990 Mar 10;188(2):313–319. doi: 10.1111/j.1432-1033.1990.tb15405.x. [DOI] [PubMed] [Google Scholar]
  19. Kholodenko B., Zilinskiene V., Borutaite V., Ivanoviene L., Toleikis A., Praskevicius A. The role of adenine nucleotide translocators in regulation of oxidative phosphorylation in heart mitochondria. FEBS Lett. 1987 Nov 2;223(2):247–250. doi: 10.1016/0014-5793(87)80298-3. [DOI] [PubMed] [Google Scholar]
  20. Korshunov S. S., Skulachev V. P., Starkov A. A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997 Oct 13;416(1):15–18. doi: 10.1016/s0014-5793(97)01159-9. [DOI] [PubMed] [Google Scholar]
  21. Murphy M. P., Tipton K. F. Effects of chronic ethanol feeding on rat liver mitochondrial energy metabolism. Biochem Pharmacol. 1992 Jun 23;43(12):2663–2667. doi: 10.1016/0006-2952(92)90158-f. [DOI] [PubMed] [Google Scholar]
  22. Quant P. A. Experimental application of top-down control analysis to metabolic systems. Trends Biochem Sci. 1993 Jan;18(1):26–30. doi: 10.1016/0968-0004(93)90084-z. [DOI] [PubMed] [Google Scholar]
  23. Rottenberg H., Robertson D. E., Rubin E. The effect of ethanol on the temperature dependence of respiration and ATPase activities of rat liver mitochondria. Lab Invest. 1980 Mar;42(3):318–326. [PubMed] [Google Scholar]
  24. Schilling R. J., Reitz R. C. A mechanism for ethanol-induced damage to liver mitochondrial structure and function. Biochim Biophys Acta. 1980 Dec 12;603(2):266–277. doi: 10.1016/0005-2736(80)90373-9. [DOI] [PubMed] [Google Scholar]
  25. Spach P. I., Herbert J. S., Cunningham C. C. The interaction between chronic ethanol consumption and oxygen tension in influencing the energy state of rat liver. Biochim Biophys Acta. 1991 Jan 3;1056(1):40–46. doi: 10.1016/s0005-2728(05)80070-2. [DOI] [PubMed] [Google Scholar]
  26. Thayer W. S., Cummings J. J., Jr Effects of chronic alcohol consumption on the steady-state kinetics properties of cytochrome oxidase in rat liver. Biochim Biophys Acta. 1990 Apr 26;1016(3):333–338. doi: 10.1016/0005-2728(90)90165-z. [DOI] [PubMed] [Google Scholar]
  27. Thayer W. S. Effects of ethanol on proteins of mitochondrial membranes. Ann N Y Acad Sci. 1987;492:193–206. doi: 10.1111/j.1749-6632.1987.tb48668.x. [DOI] [PubMed] [Google Scholar]
  28. Thayer W. S., Ohnishi T., Rubin E. Characterization of iron-sulfur clusters in rat liver submitochondrial particles by electron paramagnetic resonance spectroscopy. Alterations produced by chronic ethanol consumption. Biochim Biophys Acta. 1980 Jun 10;591(1):22–36. doi: 10.1016/0005-2728(80)90217-0. [DOI] [PubMed] [Google Scholar]
  29. Thayer W. S., Rubin E. Effects of chronic ethanol consumption on the respiratory chain of rat liver submitochondrial particles. Adv Exp Med Biol. 1980;132:385–392. doi: 10.1007/978-1-4757-1419-7_38. [DOI] [PubMed] [Google Scholar]
  30. Thayer W. S., Rubin E. Effects of chronic ethanol intoxication on oxidative phosphorylation in rat liver submitochondrial particles. J Biol Chem. 1979 Aug 25;254(16):7717–7723. [PubMed] [Google Scholar]
  31. Thayer W. S., Rubin E. Molecular alterations in the respiratory chain of rat liver after chronic ethanol consumption. J Biol Chem. 1981 Jun 25;256(12):6090–6097. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES