Abstract
Detailed mapping of glucose and lactate metabolism along the radius of the hepatic lobule was performed in situ in rat livers perfused with 1.5 mM lactate before and during the addition of 5 mM fructose. The majority of fructose uptake occurred in the periportal region; 45% of fructose taken up in the periportal half of the lobular volume being converted into glucose. Periportal lactate uptake was markedly decreased by addition of fructose. Basal perivenous lactate output, which was derived from glucose synthesized periportally, was increased in the presence of fructose. During fructose infusion there was a small decrease in cell pH periportally, but acidification of up to 0.5 pH units perivenously. The evidence suggests that in situ the apparent direct conversion of fructose into lactate represents, to a substantial extent, the result of periportal conversion of fructose into glucose and the subsequent uptake and glycolysis to lactate in the perivenous zone of some of that glucose. (31)P NMR spectroscopy showed that the cellular concentration of phosphomonoesters changes very little periportally during fructose infusion, but there was an approximate twofold increase perivenously, presumably due to the accumulation of fructose 1-phosphate. It may be inferred that fructokinase activity is expressed throughout the hepatic lobule.
Full Text
The Full Text of this article is available as a PDF (141.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agius L., Peak M. Intracellular binding of glucokinase in hepatocytes and translocation by glucose, fructose and insulin. Biochem J. 1993 Dec 15;296(Pt 3):785–796. doi: 10.1042/bj2960785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ala-Korpela M., Korhonen A., Keisala J., Hörkkö S., Korpi P., Ingman L. P., Jokisaari J., Savolainen M. J., Kesäniemi Y. A. 1H NMR-based absolute quantitation of human lipoproteins and their lipid contents directly from plasma. J Lipid Res. 1994 Dec;35(12):2292–2304. [PubMed] [Google Scholar]
- Anundi I., Kauffman F. C., Thurman R. G. Gluconeogenesis from fructose predominates in periportal regions of the liver lobule. J Biol Chem. 1987 Jul 15;262(20):9529–9534. [PubMed] [Google Scholar]
- Bates T. E., Williams S. R., Busza A. L., Gadian D. G., Proctor E. A 31P nuclear magnetic resonance study in vivo of metabolic abnormalities in rats with acute liver failure. NMR Biomed. 1988 Apr;1(2):67–73. doi: 10.1002/nbm.1940010203. [DOI] [PubMed] [Google Scholar]
- Burns S. P., Cohen R. D., Iles R. A., Bailey R. A., Desai M., Germain J. P., Going T. C. Zonation of gluconeogenesis, ketogenesis and intracellular pH in livers from normal and diabetic ketoacidotic rats: evidence for intralobular redistribution of metabolic events in ketoacidosis. Biochem J. 1999 Oct 1;343(Pt 1):273–280. [PMC free article] [PubMed] [Google Scholar]
- Burns S. P., Cohen R. D., Iles R. A., Germain J. P., Going T. C., Evans S. J., Royston P. A method for determination in situ of variations within the hepatic lobule of hepatocyte function and metabolite concentrations. Biochem J. 1996 Oct 15;319(Pt 2):377–383. doi: 10.1042/bj3190377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burns S. P., Desai M., Cohen R. D., Hales C. N., Iles R. A., Germain J. P., Going T. C., Bailey R. A. Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J Clin Invest. 1997 Oct 1;100(7):1768–1774. doi: 10.1172/JCI119703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen R. D., Henderson R. M., Iles R. A., Smith J. A. Metabolic inter-relationships of intracellular pH measured by double-barrelled micro-electrodes in perfused rat liver. J Physiol. 1982 Sep;330:69–80. doi: 10.1113/jphysiol.1982.sp014329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen R. D., Iles R. A., Barnett D., Howell M. E., Strunin J. The effect of changes in lactate uptake on the intracellular pH of the perfused rat liver. Clin Sci. 1971 Aug;41(2):159–170. doi: 10.1042/cs0410159. [DOI] [PubMed] [Google Scholar]
- Detheux M., Vandercammen A., Van Schaftingen E. Effectors of the regulatory protein acting on liver glucokinase: a kinetic investigation. Eur J Biochem. 1991 Sep 1;200(2):553–561. doi: 10.1111/j.1432-1033.1991.tb16218.x. [DOI] [PubMed] [Google Scholar]
- Iles R. A., Griffiths J. R., Stevens A. N., Gadian D. G., Porteous R. Effects of fructose on the energy metabolism and acid-base status of the perfused starved-rat liver. A 31phosphorus nuclear magnetic resonance study. Biochem J. 1980 Oct 15;192(1):191–202. doi: 10.1042/bj1920191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oberhaensli R. D., Rajagopalan B., Taylor D. J., Radda G. K., Collins J. E., Leonard J. V., Schwarz H., Herschkowitz N. Study of hereditary fructose intolerance by use of 31P magnetic resonance spectroscopy. Lancet. 1987 Oct 24;2(8565):931–934. doi: 10.1016/s0140-6736(87)91419-x. [DOI] [PubMed] [Google Scholar]
- Quistorff B., Rømert P. High zone-selectivity of cell permeabilization following digitonin-pulse perfusion of rat liver. A re-interpretation of the microcirculatory zones. Histochemistry. 1989;92(6):487–498. doi: 10.1007/BF00524760. [DOI] [PubMed] [Google Scholar]
- Racine L., Scoazec J. Y., Moreau A., Bernuau D., Feldmann G. Effects of digitonin on the intracellular content of rat hepatocytes: implications for its use in the study of intralobular heterogeneity. J Histochem Cytochem. 1993 Jul;41(7):991–1001. doi: 10.1177/41.7.8515054. [DOI] [PubMed] [Google Scholar]
- Sahebjami H., Scalettar R. Effects of fructose infusion on lactate and uric acid metabolism. Lancet. 1971 Feb 20;1(7695):366–369. doi: 10.1016/s0140-6736(71)92208-2. [DOI] [PubMed] [Google Scholar]
- Shiota M., Galassetti P., Monohan M., Neal D. W., Cherrington A. D. Small amounts of fructose markedly augment net hepatic glucose uptake in the conscious dog. Diabetes. 1998 Jun;47(6):867–873. doi: 10.2337/diabetes.47.6.867. [DOI] [PubMed] [Google Scholar]
- Suzuki-Kemmelmeier F., Ishii-Iwamoto E. L., Bracht A. The metabolism of fructose in the bivascularly perfused rat liver. Biochim Biophys Acta. 1992 Jun 12;1116(3):275–282. doi: 10.1016/0304-4165(92)90040-2. [DOI] [PubMed] [Google Scholar]
- Toyoda Y., Miwa I., Kamiya M., Ogiso S., Nonogaki T., Aoki S., Okuda J. Tissue and subcellular distribution of glucokinase in rat liver and their changes during fasting-refeeding. Histochem Cell Biol. 1995 Jan;103(1):31–38. doi: 10.1007/BF01464473. [DOI] [PubMed] [Google Scholar]
- Ui M. A role of phosphofructokinase in pH-dependent regulation of glycolysis. Biochim Biophys Acta. 1966 Aug 24;124(2):310–322. doi: 10.1016/0304-4165(66)90194-2. [DOI] [PubMed] [Google Scholar]
- Woods H. F., Alberti K. G. Dangers of intravenous fructose. Lancet. 1972 Dec 23;2(7791):1354–1357. doi: 10.1016/s0140-6736(72)92791-2. [DOI] [PubMed] [Google Scholar]
- Woods H. F., Eggleston L. V., Krebs H. A. The cause of hepatic accumulation of fructose 1-phosphate on fructose loading. Biochem J. 1970 Sep;119(3):501–510. doi: 10.1042/bj1190501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Youn J. H., Youn M. S., Bergman R. N. Synergism of glucose and fructose in net glycogen synthesis in perfused rat livers. J Biol Chem. 1986 Dec 5;261(34):15960–15969. [PubMed] [Google Scholar]