Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jul 15;349(Pt 2):579–586. doi: 10.1042/0264-6021:3490579

Effect of inhibition of glutathione synthesis on insulin action: in vivo and in vitro studies using buthionine sulfoximine.

M Khamaisi 1, O Kavel 1, M Rosenstock 1, M Porat 1, M Yuli 1, N Kaiser 1, A Rudich 1
PMCID: PMC1221181  PMID: 10880357

Abstract

Decreased cellular GSH content is a common finding in experimental and human diabetes, in which increased oxidative stress appears to occur. Oxidative stress has been suggested to play a causative role in the development of impaired insulin action on adipose tissue and skeletal muscle. In this study we undertook to investigate the potential of GSH depletion to induce insulin resistance, by utilizing the GSH synthesis inhibitor, L-buthionine-[S,R]-sulfoximine (BSO). GSH depletion (20-80% in various tissues), was achieved in vivo by treating rats for 20 days with BSO, and in vitro (80%) by treating 3T3-L1 adipocytes with BSO for 18 h. No demonstrable change in the GSH/GSSG ratio was observed following BSO treatment. GSH depletion was progressively associated with abnormal glucose tolerance test, which could not be attributed to impaired insulin secretion. Skeletal muscle insulin responsiveness was unaffected by GSH depletion, based on normal glucose response to exogenous insulin, 2-deoxyglucose uptake measurements in isolated soleus muscle, and on normal skeletal muscle expression of GLUT4 protein. Adipocyte insulin responsiveness in vitro was assessed in 3T3-L1 adipocytes, which displayed decreased insulin-stimulated tyrosine phosphorylation of insulin-receptor-substrate proteins and of the insulin receptor, but exaggerated protein kinase B phosphorylation. However, insulin-stimulated glucose uptake was unaffected by GSH depletion. In accordance, normal adipose tissue insulin sensitivity was observed in BSO-treated rats in vivo, as demonstrated by normal inhibition of circulating non-esterified fatty acid levels by endogenous insulin secretion. In conclusion, GSH depletion by BSO results in impaired glucose tolerance, but preserved adipocyte and skeletal muscle insulin responsiveness. This suggests that alternative oxidation-borne factors mediate the induction of peripheral insulin resistance by oxidative stress.

Full Text

The Full Text of this article is available as a PDF (264.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. E. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985;113:548–555. doi: 10.1016/s0076-6879(85)13073-9. [DOI] [PubMed] [Google Scholar]
  2. Baynes J. W., Thorpe S. R. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999 Jan;48(1):1–9. doi: 10.2337/diabetes.48.1.1. [DOI] [PubMed] [Google Scholar]
  3. Begum N. Phenylarsine oxide inhibits insulin-stimulated protein phosphatase 1 activity and GLUT-4 translocation. Am J Physiol. 1994 Jul;267(1 Pt 1):E14–E23. doi: 10.1152/ajpendo.1994.267.1.E14. [DOI] [PubMed] [Google Scholar]
  4. Blair A. S., Hajduch E., Litherland G. J., Hundal H. S. Regulation of glucose transport and glycogen synthesis in L6 muscle cells during oxidative stress. Evidence for cross-talk between the insulin and SAPK2/p38 mitogen-activated protein kinase signaling pathways. J Biol Chem. 1999 Dec 17;274(51):36293–36299. doi: 10.1074/jbc.274.51.36293. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Caballero B. Vitamin E improves the action of insulin. Nutr Rev. 1993 Nov;51(11):339–340. doi: 10.1111/j.1753-4887.1993.tb03761.x. [DOI] [PubMed] [Google Scholar]
  7. Chari S. N., Nath N., Rathi A. B. Glutathione and its redox system in diabetic polymorphonuclear leukocytes. Am J Med Sci. 1984 May-Jun;287(3):14–15. doi: 10.1097/00000441-198405000-00004. [DOI] [PubMed] [Google Scholar]
  8. Dandona P., Thusu K., Cook S., Snyder B., Makowski J., Armstrong D., Nicotera T. Oxidative damage to DNA in diabetes mellitus. Lancet. 1996 Feb 17;347(8999):444–445. doi: 10.1016/s0140-6736(96)90013-6. [DOI] [PubMed] [Google Scholar]
  9. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  10. Eriksson U. J., Borg L. A. Diabetes and embryonic malformations. Role of substrate-induced free-oxygen radical production for dysmorphogenesis in cultured rat embryos. Diabetes. 1993 Mar;42(3):411–419. doi: 10.2337/diab.42.3.411. [DOI] [PubMed] [Google Scholar]
  11. Figueiredo-Pereira M. E., Yakushin S., Cohen G. Disruption of the intracellular sulfhydryl homeostasis by cadmium-induced oxidative stress leads to protein thiolation and ubiquitination in neuronal cells. J Biol Chem. 1998 May 22;273(21):12703–12709. doi: 10.1074/jbc.273.21.12703. [DOI] [PubMed] [Google Scholar]
  12. Frost S. C., Lane M. D. Evidence for the involvement of vicinal sulfhydryl groups in insulin-activated hexose transport by 3T3-L1 adipocytes. J Biol Chem. 1985 Mar 10;260(5):2646–2652. [PubMed] [Google Scholar]
  13. Gadot M., Leibowitz G., Shafrir E., Cerasi E., Gross D. J., Kaiser N. Hyperproinsulinemia and insulin deficiency in the diabetic Psammomys obesus. Endocrinology. 1994 Aug;135(2):610–616. doi: 10.1210/endo.135.2.8033810. [DOI] [PubMed] [Google Scholar]
  14. Giugliano D., Ceriello A., Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care. 1996 Mar;19(3):257–267. doi: 10.2337/diacare.19.3.257. [DOI] [PubMed] [Google Scholar]
  15. Hansen L. L., Ikeda Y., Olsen G. S., Busch A. K., Mosthaf L. Insulin signaling is inhibited by micromolar concentrations of H(2)O(2). Evidence for a role of H(2)O(2) in tumor necrosis factor alpha-mediated insulin resistance. J Biol Chem. 1999 Aug 27;274(35):25078–25084. doi: 10.1074/jbc.274.35.25078. [DOI] [PubMed] [Google Scholar]
  16. Holman G. D., Kasuga M. From receptor to transporter: insulin signalling to glucose transport. Diabetologia. 1997 Sep;40(9):991–1003. doi: 10.1007/s001250050780. [DOI] [PubMed] [Google Scholar]
  17. Jacob S., Henriksen E. J., Schiemann A. L., Simon I., Clancy D. E., Tritschler H. J., Jung W. I., Augustin H. J., Dietze G. J. Enhancement of glucose disposal in patients with type 2 diabetes by alpha-lipoic acid. Arzneimittelforschung. 1995 Aug;45(8):872–874. [PubMed] [Google Scholar]
  18. Kaneto H., Fujii J., Myint T., Miyazawa N., Islam K. N., Kawasaki Y., Suzuki K., Nakamura M., Tatsumi H., Yamasaki Y. Reducing sugars trigger oxidative modification and apoptosis in pancreatic beta-cells by provoking oxidative stress through the glycation reaction. Biochem J. 1996 Dec 15;320(Pt 3):855–863. doi: 10.1042/bj3200855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kaneto H., Kajimoto Y., Miyagawa J., Matsuoka T., Fujitani Y., Umayahara Y., Hanafusa T., Matsuzawa Y., Yamasaki Y., Hori M. Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity. Diabetes. 1999 Dec;48(12):2398–2406. doi: 10.2337/diabetes.48.12.2398. [DOI] [PubMed] [Google Scholar]
  20. Khamaisi M., Potashnik R., Tirosh A., Demshchak E., Rudich A., Tritschler H., Wessel K., Bashan N. Lipoic acid reduces glycemia and increases muscle GLUT4 content in streptozotocin-diabetic rats. Metabolism. 1997 Jul;46(7):763–768. doi: 10.1016/s0026-0495(97)90120-7. [DOI] [PubMed] [Google Scholar]
  21. Khamaisi M., Rudich A., Beeri I., Pessler D., Friger M., Gavrilov V., Tritschler H., Bashan N. Metabolic effects of gamma-linolenic acid-alpha-lipoic acid conjugate in streptozotocin diabetic rats. Antioxid Redox Signal. 1999 Winter;1(4):523–535. doi: 10.1089/ars.1999.1.4-523. [DOI] [PubMed] [Google Scholar]
  22. Leeuwenburgh C., Ji L. L. Glutathione depletion in rested and exercised mice: biochemical consequence and adaptation. Arch Biochem Biophys. 1995 Feb 1;316(2):941–949. doi: 10.1006/abbi.1995.1125. [DOI] [PubMed] [Google Scholar]
  23. Loven D., Schedl H., Wilson H., Daabees T. T., Stegink L. D., Diekus M., Oberley L. Effect of insulin and oral glutathione on glutathione levels and superoxide dismutase activities in organs of rats with streptozocin-induced diabetes. Diabetes. 1986 May;35(5):503–507. doi: 10.2337/diab.35.5.503. [DOI] [PubMed] [Google Scholar]
  24. Matsuoka T., Kajimoto Y., Watada H., Kaneto H., Kishimoto M., Umayahara Y., Fujitani Y., Kamada T., Kawamori R., Yamasaki Y. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J Clin Invest. 1997 Jan 1;99(1):144–150. doi: 10.1172/JCI119126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Muchová J., Liptáková A., Országhová Z., Garaiová I., Tison P., Cársky J., Duracková Z. Antioxidant systems in polymorphonuclear leucocytes of Type 2 diabetes mellitus. Diabet Med. 1999 Jan;16(1):74–78. doi: 10.1046/j.1464-5491.1999.00015.x. [DOI] [PubMed] [Google Scholar]
  26. Mårtensson J., Jain A., Stole E., Frayer W., Auld P. A., Meister A. Inhibition of glutathione synthesis in the newborn rat: a model for endogenously produced oxidative stress. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9360–9364. doi: 10.1073/pnas.88.20.9360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nagamatsu M., Nickander K. K., Schmelzer J. D., Raya A., Wittrock D. A., Tritschler H., Low P. A. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care. 1995 Aug;18(8):1160–1167. doi: 10.2337/diacare.18.8.1160. [DOI] [PubMed] [Google Scholar]
  28. Nath N., Chari S. N., Rathi A. B. Superoxide dismutase in diabetic polymorphonuclear leukocytes. Diabetes. 1984 Jun;33(6):586–589. doi: 10.2337/diab.33.6.586. [DOI] [PubMed] [Google Scholar]
  29. Nourooz-Zadeh J., Rahimi A., Tajaddini-Sarmadi J., Tritschler H., Rosen P., Halliwell B., Betteridge D. J. Relationships between plasma measures of oxidative stress and metabolic control in NIDDM. Diabetologia. 1997 Jun;40(6):647–653. doi: 10.1007/s001250050729. [DOI] [PubMed] [Google Scholar]
  30. Okada K., Wangpoengtrakul C., Osawa T., Toyokuni S., Tanaka K., Uchida K. 4-Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress. Identification of proteasomes as target molecules. J Biol Chem. 1999 Aug 20;274(34):23787–23793. doi: 10.1074/jbc.274.34.23787. [DOI] [PubMed] [Google Scholar]
  31. Paolisso G., D'Amore A., Balbi V., Volpe C., Galzerano D., Giugliano D., Sgambato S., Varricchio M., D'Onofrio F. Plasma vitamin C affects glucose homeostasis in healthy subjects and in non-insulin-dependent diabetics. Am J Physiol. 1994 Feb;266(2 Pt 1):E261–E268. doi: 10.1152/ajpendo.1994.266.2.E261. [DOI] [PubMed] [Google Scholar]
  32. Paolisso G., D'Amore A., Di Maro G., Galzerano D., Tesauro P., Varricchio M., D'Onofrio F. Evidence for a relationship between free radicals and insulin action in the elderly. Metabolism. 1993 May;42(5):659–663. doi: 10.1016/0026-0495(93)90228-g. [DOI] [PubMed] [Google Scholar]
  33. Paolisso G., D'Amore A., Volpe C., Balbi V., Saccomanno F., Galzerano D., Giugliano D., Varricchio M., D'Onofrio F. Evidence for a relationship between oxidative stress and insulin action in non-insulin-dependent (type II) diabetic patients. Metabolism. 1994 Nov;43(11):1426–1429. doi: 10.1016/0026-0495(94)90039-6. [DOI] [PubMed] [Google Scholar]
  34. Paolisso G., Di Maro G., Pizza G., D'Amore A., Sgambato S., Tesauro P., Varricchio M., D'Onofrio F. Plasma GSH/GSSG affects glucose homeostasis in healthy subjects and non-insulin-dependent diabetics. Am J Physiol. 1992 Sep;263(3 Pt 1):E435–E440. doi: 10.1152/ajpendo.1992.263.3.E435. [DOI] [PubMed] [Google Scholar]
  35. Ramlal T., Rastogi S., Vranic M., Klip A. Decrease in glucose transporter number in skeletal muscle of mildly diabetic (streptozotocin-treated) rats. Endocrinology. 1989 Aug;125(2):890–897. doi: 10.1210/endo-125-2-890. [DOI] [PubMed] [Google Scholar]
  36. Rea S., James D. E. Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes. 1997 Nov;46(11):1667–1677. doi: 10.2337/diab.46.11.1667. [DOI] [PubMed] [Google Scholar]
  37. Rudich A., Kozlovsky N., Potashnik R., Bashan N. Oxidant stress reduces insulin responsiveness in 3T3-L1 adipocytes. Am J Physiol. 1997 May;272(5 Pt 1):E935–E940. doi: 10.1152/ajpendo.1997.272.5.E935. [DOI] [PubMed] [Google Scholar]
  38. Rudich A., Tirosh A., Potashnik R., Hemi R., Kanety H., Bashan N. Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes. 1998 Oct;47(10):1562–1569. doi: 10.2337/diabetes.47.10.1562. [DOI] [PubMed] [Google Scholar]
  39. Rudich A., Tirosh A., Potashnik R., Khamaisi M., Bashan N. Lipoic acid protects against oxidative stress induced impairment in insulin stimulation of protein kinase B and glucose transport in 3T3-L1 adipocytes. Diabetologia. 1999 Aug;42(8):949–957. doi: 10.1007/s001250051253. [DOI] [PubMed] [Google Scholar]
  40. Samiec P. S., Drews-Botsch C., Flagg E. W., Kurtz J. C., Sternberg P., Jr, Reed R. L., Jones D. P. Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. Free Radic Biol Med. 1998 Mar 15;24(5):699–704. doi: 10.1016/s0891-5849(97)00286-4. [DOI] [PubMed] [Google Scholar]
  41. Sen C. K., Atalay M., Hänninen O. Exercise-induced oxidative stress: glutathione supplementation and deficiency. J Appl Physiol (1985) 1994 Nov;77(5):2177–2187. doi: 10.1152/jappl.1994.77.5.2177. [DOI] [PubMed] [Google Scholar]
  42. Sinclair A. J., Girling A. J., Gray L., Le Guen C., Lunec J., Barnett A. H. Disturbed handling of ascorbic acid in diabetic patients with and without microangiopathy during high dose ascorbate supplementation. Diabetologia. 1991 Mar;34(3):171–175. doi: 10.1007/BF00418271. [DOI] [PubMed] [Google Scholar]
  43. Stenbit A. E., Tsao T. S., Li J., Burcelin R., Geenen D. L., Factor S. M., Houseknecht K., Katz E. B., Charron M. J. GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nat Med. 1997 Oct;3(10):1096–1101. doi: 10.1038/nm1097-1096. [DOI] [PubMed] [Google Scholar]
  44. Thomas G., Skrinska V., Lucas F. V., Schumacher O. P. Platelet glutathione and thromboxane synthesis in diabetes. Diabetes. 1985 Oct;34(10):951–954. doi: 10.2337/diab.34.10.951. [DOI] [PubMed] [Google Scholar]
  45. Tiedge M., Lortz S., Drinkgern J., Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes. 1997 Nov;46(11):1733–1742. doi: 10.2337/diab.46.11.1733. [DOI] [PubMed] [Google Scholar]
  46. Tirosh A., Potashnik R., Bashan N., Rudich A. Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. A putative cellular mechanism for impaired protein kinase B activation and GLUT4 translocation. J Biol Chem. 1999 Apr 9;274(15):10595–10602. doi: 10.1074/jbc.274.15.10595. [DOI] [PubMed] [Google Scholar]
  47. Volkovová K., Chorváthová V., Jurcovicová M., Koszeghyová L., Bobek P. Antioxidative state of the myocardium and kidneys in acute diabetic rats. Physiol Res. 1993;42(4):251–255. [PubMed] [Google Scholar]
  48. Will J. C., Ford E. S., Bowman B. A. Serum vitamin C concentrations and diabetes: findings from the Third National Health and Nutrition Examination Survey, 1988-1994. Am J Clin Nutr. 1999 Jul;70(1):49–52. doi: 10.1093/ajcn/70.1.49. [DOI] [PubMed] [Google Scholar]
  49. Wolff S. P. Diabetes mellitus and free radicals. Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. Br Med Bull. 1993 Jul;49(3):642–652. doi: 10.1093/oxfordjournals.bmb.a072637. [DOI] [PubMed] [Google Scholar]
  50. Yoshida K., Hirokawa J., Tagami S., Kawakami Y., Urata Y., Kondo T. Weakened cellular scavenging activity against oxidative stress in diabetes mellitus: regulation of glutathione synthesis and efflux. Diabetologia. 1995 Feb;38(2):201–210. doi: 10.1007/BF00400095. [DOI] [PubMed] [Google Scholar]
  51. Yue D. K., McLennan S., McGill M., Fisher E., Heffernan S., Capogreco C., Turtle J. R. Abnormalities of ascorbic acid metabolism and diabetic control: differences between diabetic patients and diabetic rats. Diabetes Res Clin Pract. 1990 Jul;9(3):239–244. doi: 10.1016/0168-8227(90)90051-t. [DOI] [PubMed] [Google Scholar]
  52. de Zwart L. L., Meerman J. H., Commandeur J. N., Vermeulen N. P. Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic Biol Med. 1999 Jan;26(1-2):202–226. doi: 10.1016/s0891-5849(98)00196-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES