Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jul 15;349(Pt 2):587–597. doi: 10.1042/0264-6021:3490587

N-arginine dibasic convertase (nardilysin) isoforms are soluble dibasic-specific metalloendopeptidases that localize in the cytoplasm and at the cell surface.

V Hospital 1, V Chesneau 1, A Balogh 1, C Joulie 1, N G Seidah 1, P Cohen 1, A Prat 1
PMCID: PMC1221182  PMID: 10880358

Abstract

N-arginine (R) dibasic (NRD) convertase (nardilysin; EC 3.4.24.61), a metalloendopeptidase of the M16 family, specifically cleaves peptide substrates at the N-terminus of arginines in dibasic motifs in vitro. In rat testis, the enzyme localizes within the cytoplasm of spermatids and associates with microtubules of the manchette and axoneme. NRD1 and NRD2 convertases, two NRD convertase isoforms, differ by the absence (isoform 1) or presence (isoform 2) of a 68-amino acid insertion close to the active site. In this study, we overexpressed both isoforms, either by vaccinia virus infection of BSC40 cells or transfection of COS-7 cells. The partially purified enzymes exhibit very similar biochemical and enzymic properties. Microsequencing revealed that NRD convertase is N-terminally processed. Results of immunocytofluorescence, immunoelectron microscopy and subcellular fractionation studies argue in favour of a primary cytosolic localization of both peptidases. Although the putative signal peptide did not direct NRD convertase into microsomes in an in vitro translation assay, biotinylation experiments clearly showed the presence of both isoforms at the cell surface. In conclusion, although most known processing events at pairs of basic residues are achieved by proprotein convertases within the secretory pathway, NRD convertase may fulfil a similar function in the cytoplasm and/or at the cell surface.

Full Text

The Full Text of this article is available as a PDF (335.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adames N., Blundell K., Ashby M. N., Boone C. Role of yeast insulin-degrading enzyme homologs in propheromone processing and bud site selection. Science. 1995 Oct 20;270(5235):464–467. doi: 10.1126/science.270.5235.464. [DOI] [PubMed] [Google Scholar]
  2. Affholter J. A., Fried V. A., Roth R. A. Human insulin-degrading enzyme shares structural and functional homologies with E. coli protease III. Science. 1988 Dec 9;242(4884):1415–1418. doi: 10.1126/science.3059494. [DOI] [PubMed] [Google Scholar]
  3. Balogh A., Cadel S., Foulon T., Picart R., Der Garabedian A., Rousselet A., Tougard C., Cohen P. Aminopeptidase B: a processing enzyme secreted and associated with the plasma membrane of rat pheochromocytoma (PC12) cells. J Cell Sci. 1998 Jan;111(Pt 2):161–169. doi: 10.1242/jcs.111.2.161. [DOI] [PubMed] [Google Scholar]
  4. Barnes K., Turner A. J. The endothelin system and endothelin-converting enzyme in the brain: molecular and cellular studies. Neurochem Res. 1997 Aug;22(8):1033–1040. doi: 10.1023/a:1022435111928. [DOI] [PubMed] [Google Scholar]
  5. Baumeister H., Müller D., Rehbein M., Richter D. The rat insulin-degrading enzyme. Molecular cloning and characterization of tissue-specific transcripts. FEBS Lett. 1993 Feb 15;317(3):250–254. doi: 10.1016/0014-5793(93)81286-9. [DOI] [PubMed] [Google Scholar]
  6. Becker A. B., Roth R. A. An unusual active site identified in a family of zinc metalloendopeptidases. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3835–3839. doi: 10.1073/pnas.89.9.3835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bond J. S., Beynon R. J. The astacin family of metalloendopeptidases. Protein Sci. 1995 Jul;4(7):1247–1261. doi: 10.1002/pro.5560040701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Braun H. P., Schmitz U. K. The mitochondrial processing peptidase. Int J Biochem Cell Biol. 1997 Aug-Sep;29(8-9):1043–1045. doi: 10.1016/s1357-2725(97)00032-0. [DOI] [PubMed] [Google Scholar]
  9. Brinkley B. R., Murphy P., Richardson L. C. Procedure for embedding in situ selected cells cultured in vitro. J Cell Biol. 1967 Oct;35(1):279–283. doi: 10.1083/jcb.35.1.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Campan M., Yoshizumi M., Seidah N. G., Lee M. E., Bianchi C., Haber E. Increased proteolytic processing of protein tyrosine phosphatase mu in confluent vascular endothelial cells: the role of PC5, a member of the subtilisin family. Biochemistry. 1996 Mar 26;35(12):3797–3802. doi: 10.1021/bi952552d. [DOI] [PubMed] [Google Scholar]
  11. Chesneau V., Pierotti A. R., Barré N., Créminon C., Tougard C., Cohen P. Isolation and characterization of a dibasic selective metalloendopeptidase from rat testes that cleaves at the amino terminus of arginine residues. J Biol Chem. 1994 Jan 21;269(3):2056–2061. [PubMed] [Google Scholar]
  12. Chesneau V., Pierotti A. R., Prat A., Gaudoux F., Foulon T., Cohen P. N-arginine dibasic convertase (NRD convertase): a newcomer to the family of processing endopeptidases. An overview. Biochimie. 1994;76(3-4):234–240. doi: 10.1016/0300-9084(94)90151-1. [DOI] [PubMed] [Google Scholar]
  13. Chesneau V., Prat A., Segretain D., Hospital V., Dupaix A., Foulon T., Jégou B., Cohen P. NRD convertase: a putative processing endoprotease associated with the axoneme and the manchette in late spermatids. J Cell Sci. 1996 Nov;109(Pt 11):2737–2745. doi: 10.1242/jcs.109.11.2737. [DOI] [PubMed] [Google Scholar]
  14. Cohen P., Pierotti A. R., Chesneau V., Foulon T., Prat A. N-arginine dibasic convertase. Methods Enzymol. 1995;248:703–716. doi: 10.1016/0076-6879(95)48047-1. [DOI] [PubMed] [Google Scholar]
  15. Crack P. J., Wu T. J., Cummins P. M., Ferro E. S., Tullai J. W., Glucksman M. J., Roberts J. L. The association of metalloendopeptidase EC 3.4.24.15 at the extracellular surface of the AtT-20 cell plasma membrane. Brain Res. 1999 Jul 24;835(2):113–124. doi: 10.1016/s0006-8993(99)01494-8. [DOI] [PubMed] [Google Scholar]
  16. Csuhai E., Safavi A., Hersh L. B. Purification and characterization of a secreted arginine-specific dibasic cleaving enzyme from EL-4 cells. Biochemistry. 1995 Sep 26;34(38):12411–12419. doi: 10.1021/bi00038a039. [DOI] [PubMed] [Google Scholar]
  17. Davison A. J., Moss B. New vaccinia virus recombination plasmids incorporating a synthetic late promoter for high level expression of foreign proteins. Nucleic Acids Res. 1990 Jul 25;18(14):4285–4286. doi: 10.1093/nar/18.14.4285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. De Bie I., Marcinkiewicz M., Malide D., Lazure C., Nakayama K., Bendayan M., Seidah N. G. The isoforms of proprotein convertase PC5 are sorted to different subcellular compartments. J Cell Biol. 1996 Dec;135(5):1261–1275. doi: 10.1083/jcb.135.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Devault A., Lazure C., Nault C., Le Moual H., Seidah N. G., Chrétien M., Kahn P., Powell J., Mallet J., Beaumont A. Amino acid sequence of rabbit kidney neutral endopeptidase 24.11 (enkephalinase) deduced from a complementary DNA. EMBO J. 1987 May;6(5):1317–1322. doi: 10.1002/j.1460-2075.1987.tb02370.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Erdös E. G., Skidgel R. A. Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones. FASEB J. 1989 Feb;3(2):145–151. [PubMed] [Google Scholar]
  21. Fliegel L., Burns K., Opas M., Michalak M. The high-affinity calcium binding protein of sarcoplasmic reticulum. Tissue distribution, and homology with calregulin. Biochim Biophys Acta. 1989 Jun 26;982(1):1–8. doi: 10.1016/0005-2736(89)90166-1. [DOI] [PubMed] [Google Scholar]
  22. Fujita A., Oka C., Arikawa Y., Katagai T., Tonouchi A., Kuhara S., Misumi Y. A yeast gene necessary for bud-site selection encodes a protein similar to insulin-degrading enzymes. Nature. 1994 Dec 8;372(6506):567–570. doi: 10.1038/372567a0. [DOI] [PubMed] [Google Scholar]
  23. Fumagalli P., Accarino M., Egeo A., Scartezzini P., Rappazzo G., Pizzuti A., Avvantaggiato V., Simeone A., Arrigo G., Zuffardi O. Human NRD convertase: a highly conserved metalloendopeptidase expressed at specific sites during development and in adult tissues. Genomics. 1998 Jan 15;47(2):238–245. doi: 10.1006/geno.1997.5078. [DOI] [PubMed] [Google Scholar]
  24. Gehm B. D., Kuo W. L., Perlman R. K., Rosner M. R. Mutations in a zinc-binding domain of human insulin-degrading enzyme eliminate catalytic activity but not insulin binding. J Biol Chem. 1993 Apr 15;268(11):7943–7948. [PubMed] [Google Scholar]
  25. Gluschankof P., Gomez S., Morel A., Cohen P. Enzymes that process somatostatin precursors. A novel endoprotease that cleaves before the arginine-lysine doublet is involved in somatostatin-28 convertase activity of rat brain cortex. J Biol Chem. 1987 Jul 15;262(20):9615–9620. [PubMed] [Google Scholar]
  26. Gomez S., Gluschankof P., Lepage A., Cohen P. Relationship between endo- and exopeptidases in a processing enzyme system: activation of an endoprotease by the aminopeptidase B-like activity in somatostatin-28 convertase. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5468–5472. doi: 10.1073/pnas.85.15.5468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hawlitschek G., Schneider H., Schmidt B., Tropschug M., Hartl F. U., Neupert W. Mitochondrial protein import: identification of processing peptidase and of PEP, a processing enhancing protein. Cell. 1988 Jun 3;53(5):795–806. doi: 10.1016/0092-8674(88)90096-7. [DOI] [PubMed] [Google Scholar]
  28. Hooper N. M. Families of zinc metalloproteases. FEBS Lett. 1994 Oct 31;354(1):1–6. doi: 10.1016/0014-5793(94)01079-x. [DOI] [PubMed] [Google Scholar]
  29. Hospital V., Prat A., Joulie C., Chérif D., Day R., Cohen P. Human and rat testis express two mRNA species encoding variants of NRD convertase, a metalloendopeptidase of the insulinase family. Biochem J. 1997 Nov 1;327(Pt 3):773–779. doi: 10.1042/bj3270773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Johnson G. V., Guttmann R. P. Calpains: intact and active? Bioessays. 1997 Nov;19(11):1011–1018. doi: 10.1002/bies.950191111. [DOI] [PubMed] [Google Scholar]
  31. Kandel J., Bossy-Wetzel E., Radvanyi F., Klagsbrun M., Folkman J., Hanahan D. Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell. 1991 Sep 20;66(6):1095–1104. doi: 10.1016/0092-8674(91)90033-u. [DOI] [PubMed] [Google Scholar]
  32. Kidd V. J. Proteolytic activities that mediate apoptosis. Annu Rev Physiol. 1998;60:533–573. doi: 10.1146/annurev.physiol.60.1.533. [DOI] [PubMed] [Google Scholar]
  33. Koide R., Ikeuchi T., Onodera O., Tanaka H., Igarashi S., Endo K., Takahashi H., Kondo R., Ishikawa A., Hayashi T. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet. 1994 Jan;6(1):9–13. doi: 10.1038/ng0194-9. [DOI] [PubMed] [Google Scholar]
  34. Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991 Oct 25;266(30):19867–19870. [PubMed] [Google Scholar]
  35. Mallat A., Pavoine C., Dufour M., Lotersztajn S., Bataille D., Pecker F. A glucagon fragment is responsible for the inhibition of the liver Ca2+ pump by glucagon. Nature. 1987 Feb 12;325(6105):620–622. doi: 10.1038/325620a0. [DOI] [PubMed] [Google Scholar]
  36. McCabe J. B., Berthiaume L. G. Functional roles for fatty acylated amino-terminal domains in subcellular localization. Mol Biol Cell. 1999 Nov;10(11):3771–3786. doi: 10.1091/mbc.10.11.3771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
  38. Mykles D. L. Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems. Int Rev Cytol. 1998;184:157–289. doi: 10.1016/s0074-7696(08)62181-6. [DOI] [PubMed] [Google Scholar]
  39. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997 Jan;10(1):1–6. doi: 10.1093/protein/10.1.1. [DOI] [PubMed] [Google Scholar]
  40. Pierotti A. R., Prat A., Chesneau V., Gaudoux F., Leseney A. M., Foulon T., Cohen P. N-arginine dibasic convertase, a metalloendopeptidase as a prototype of a class of processing enzymes. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6078–6082. doi: 10.1073/pnas.91.13.6078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Richter S., Lamppa G. K. A chloroplast processing enzyme functions as the general stromal processing peptidase. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7463–7468. doi: 10.1073/pnas.95.13.7463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rubartelli A., Cozzolino F., Talio M., Sitia R. A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence. EMBO J. 1990 May;9(5):1503–1510. doi: 10.1002/j.1460-2075.1990.tb08268.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  44. Seidah N. G., Chrétien M. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res. 1999 Nov 27;848(1-2):45–62. doi: 10.1016/s0006-8993(99)01909-5. [DOI] [PubMed] [Google Scholar]
  45. Seta K. A., Roth R. A. Overexpression of insulin degrading enzyme: cellular localization and effects on insulin signaling. Biochem Biophys Res Commun. 1997 Feb 3;231(1):167–171. doi: 10.1006/bbrc.1997.6066. [DOI] [PubMed] [Google Scholar]
  46. Steiner D. F. The proprotein convertases. Curr Opin Chem Biol. 1998 Feb;2(1):31–39. doi: 10.1016/s1367-5931(98)80033-1. [DOI] [PubMed] [Google Scholar]
  47. Tager H. S., Steiner D. F. Peptide hormones. Annu Rev Biochem. 1974;43(0):509–538. doi: 10.1146/annurev.bi.43.070174.002453. [DOI] [PubMed] [Google Scholar]
  48. Towler D. A., Gordon J. I., Adams S. P., Glaser L. The biology and enzymology of eukaryotic protein acylation. Annu Rev Biochem. 1988;57:69–99. doi: 10.1146/annurev.bi.57.070188.000441. [DOI] [PubMed] [Google Scholar]
  49. VanderVere P. S., Bennett T. M., Oblong J. E., Lamppa G. K. A chloroplast processing enzyme involved in precursor maturation shares a zinc-binding motif with a recently recognized family of metalloendopeptidases. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7177–7181. doi: 10.1073/pnas.92.16.7177. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES