Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jul 15;349(Pt 2):611–621. doi: 10.1042/0264-6021:3490611

Targeting and insertion of C-terminally anchored proteins to the mitochondrial outer membrane is specific and saturable but does not strictly require ATP or molecular chaperones.

L Lan 1, S Isenmann 1, B W Wattenberg 1
PMCID: PMC1221185  PMID: 10880361

Abstract

A distinct class of proteins contain a C-terminal membrane anchor and a cytoplasmic functional domain. A subset of these proteins is targeted to the mitochondrial outer membrane. Here, to probe for the involvement of a saturable targeting mechanism for this class of proteins, and to elucidate the roles of chaperone proteins and ATP, we have utilized an in vitro targeting system consisting of in vitro-synthesized proteins and isolated mitochondria. To establish the specificity of targeting we have used a closely related protein pair. VAMP-1A and VAMP-1B are splice variants of the vesicle-associated membrane protein/synaptobrevin-1 (VAMP-1) gene. In intact cells VAMP-1B is targeted to mitochondria whereas VAMP-1A is targeted to membranes of the secretory pathway, yet these isoforms differ by only five amino acids at the extreme C-terminus. Here we demonstrate that, in vitro, VAMP-1B is imported into both intact mitochondria and mitochondrial outer-membrane vesicles with a 15-fold greater efficiency than VAMP-1A. We generated and purified bacterially expressed fusion proteins consisting of the C-terminal two-thirds of VAMP-1A or -1B proteins fused to glutathione S-transferase (GST). Using these fusion proteins we demonstrate that protein targeting and insertion is saturable and specific for the VAMP-1B membrane anchor. To elucidate the role of cytosolic chaperones on VAMP-1B targeting, we also used the purified, Escherichia coli-derived fusion proteins. (33)P-Labelled GST-VAMP-1B(61-116), but not GST-VAMP-1A(61-118), was efficiently targeted to mitochondria in a chaperone-free system. Thus the information required for targeting is contained within the targeted protein itself and not the chaperone or a chaperone-protein complex, although chaperones may be required to maintain a transport-competent conformation. Moreover, ATP was required for transport only in the presence of cytosolic chaperone proteins. Therefore the ATP requirement of transport appears to reflect the participation of chaperones and not any other ATP-dependent step. These data demonstrate that targeting of C-terminally anchored proteins to mitochondria is sequence specific and mediated by a saturable mechanism. Neither ATP nor chaperone proteins are strictly required for either specific targeting or membrane insertion.

Full Text

The Full Text of this article is available as a PDF (388.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. J., Mostov K. E., Blobel G. Mechanisms of integration of de novo-synthesized polypeptides into membranes: signal-recognition particle is required for integration into microsomal membranes of calcium ATPase and of lens MP26 but not of cytochrome b5. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7249–7253. doi: 10.1073/pnas.80.23.7249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. D'Arrigo A., Manera E., Longhi R., Borgese N. The specific subcellular localization of two isoforms of cytochrome b5 suggests novel targeting pathways. J Biol Chem. 1993 Feb 5;268(4):2802–2808. [PubMed] [Google Scholar]
  3. Deshaies R. J., Koch B. D., Werner-Washburne M., Craig E. A., Schekman R. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature. 1988 Apr 28;332(6167):800–805. doi: 10.1038/332800a0. [DOI] [PubMed] [Google Scholar]
  4. Eilers M., Hwang S., Schatz G. Unfolding and refolding of a purified precursor protein during import into isolated mitochondria. EMBO J. 1988 Apr;7(4):1139–1145. doi: 10.1002/j.1460-2075.1988.tb02923.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Enoch H. G., Fleming P. J., Strittmatter P. The binding of cytochrome b5 to phospholipid vesicles and biological membranes. Effect of orientation on intermembrane transfer and digestion by carboxypeptidase Y. J Biol Chem. 1979 Jul 25;254(14):6483–6488. [PubMed] [Google Scholar]
  6. Hachiya N., Alam R., Sakasegawa Y., Sakaguchi M., Mihara K., Omura T. A mitochondrial import factor purified from rat liver cytosol is an ATP-dependent conformational modulator for precursor proteins. EMBO J. 1993 Apr;12(4):1579–1586. doi: 10.1002/j.1460-2075.1993.tb05802.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hachiya N., Mihara K., Suda K., Horst M., Schatz G., Lithgow T. Reconstitution of the initial steps of mitochondrial protein import. Nature. 1995 Aug 24;376(6542):705–709. doi: 10.1038/376705a0. [DOI] [PubMed] [Google Scholar]
  8. Isenmann S., Khew-Goodall Y., Gamble J., Vadas M., Wattenberg B. W. A splice-isoform of vesicle-associated membrane protein-1 (VAMP-1) contains a mitochondrial targeting signal. Mol Biol Cell. 1998 Jul;9(7):1649–1660. doi: 10.1091/mbc.9.7.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Iwahashi J., Takaichi S., Mihara K., Omura T. Reconstitution of import-competent outer membrane vesicles from mammalian mitochondria. J Biochem. 1994 Jul;116(1):156–163. doi: 10.1093/oxfordjournals.jbchem.a124488. [DOI] [PubMed] [Google Scholar]
  10. Janiak F., Leber B., Andrews D. W. Assembly of Bcl-2 into microsomal and outer mitochondrial membranes. J Biol Chem. 1994 Apr 1;269(13):9842–9849. [PubMed] [Google Scholar]
  11. Kim P. K., Hollerbach C., Trimble W. S., Leber B., Andrews D. W. Identification of the endoplasmic reticulum targeting signal in vesicle-associated membrane proteins. J Biol Chem. 1999 Dec 24;274(52):36876–36882. doi: 10.1074/jbc.274.52.36876. [DOI] [PubMed] [Google Scholar]
  12. Kim P. K., Janiak-Spens F., Trimble W. S., Leber B., Andrews D. W. Evidence for multiple mechanisms for membrane binding and integration via carboxyl-terminal insertion sequences. Biochemistry. 1997 Jul 22;36(29):8873–8882. doi: 10.1021/bi970090t. [DOI] [PubMed] [Google Scholar]
  13. Komiya T., Sakaguchi M., Mihara K. Cytoplasmic chaperones determine the targeting pathway of precursor proteins to mitochondria. EMBO J. 1996 Jan 15;15(2):399–407. [PMC free article] [PubMed] [Google Scholar]
  14. Krajewski S., Tanaka S., Takayama S., Schibler M. J., Fenton W., Reed J. C. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 1993 Oct 1;53(19):4701–4714. [PubMed] [Google Scholar]
  15. Kuroda R., Ikenoue T., Honsho M., Tsujimoto S., Mitoma J. Y., Ito A. Charged amino acids at the carboxyl-terminal portions determine the intracellular locations of two isoforms of cytochrome b5. J Biol Chem. 1998 Nov 20;273(47):31097–31102. doi: 10.1074/jbc.273.47.31097. [DOI] [PubMed] [Google Scholar]
  16. Kutay U., Ahnert-Hilger G., Hartmann E., Wiedenmann B., Rapoport T. A. Transport route for synaptobrevin via a novel pathway of insertion into the endoplasmic reticulum membrane. EMBO J. 1995 Jan 16;14(2):217–223. doi: 10.1002/j.1460-2075.1995.tb06994.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kutay U., Hartmann E., Rapoport T. A. A class of membrane proteins with a C-terminal anchor. Trends Cell Biol. 1993 Mar;3(3):72–75. doi: 10.1016/0962-8924(93)90066-a. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lithgow T., van Driel R., Bertram J. F., Strasser A. The protein product of the oncogene bcl-2 is a component of the nuclear envelope, the endoplasmic reticulum, and the outer mitochondrial membrane. Cell Growth Differ. 1994 Apr;5(4):411–417. [PubMed] [Google Scholar]
  20. McBride H. M., Millar D. G., Li J. M., Shore G. C. A signal-anchor sequence selective for the mitochondrial outer membrane. J Cell Biol. 1992 Dec;119(6):1451–1457. doi: 10.1083/jcb.119.6.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Millar D. G., Shore G. C. Signal anchor sequence insertion into the outer mitochondrial membrane. Comparison with porin and the matrix protein targeting pathway. J Biol Chem. 1996 Oct 18;271(42):25823–25829. doi: 10.1074/jbc.271.42.25823. [DOI] [PubMed] [Google Scholar]
  22. Murakami H., Pain D., Blobel G. 70-kD heat shock-related protein is one of at least two distinct cytosolic factors stimulating protein import into mitochondria. J Cell Biol. 1988 Dec;107(6 Pt 1):2051–2057. doi: 10.1083/jcb.107.6.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Neupert W., Hartl F. U., Craig E. A., Pfanner N. How do polypeptides cross the mitochondrial membranes? Cell. 1990 Nov 2;63(3):447–450. doi: 10.1016/0092-8674(90)90437-j. [DOI] [PubMed] [Google Scholar]
  24. Nguyen M., Millar D. G., Yong V. W., Korsmeyer S. J., Shore G. C. Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence. J Biol Chem. 1993 Dec 5;268(34):25265–25268. [PubMed] [Google Scholar]
  25. Pfanner N., Craig E. A., Hönlinger A. Mitochondrial preprotein translocase. Annu Rev Cell Dev Biol. 1997;13:25–51. doi: 10.1146/annurev.cellbio.13.1.25. [DOI] [PubMed] [Google Scholar]
  26. Pfanner N., Müller H. K., Harmey M. A., Neupert W. Mitochondrial protein import: involvement of the mature part of a cleavable precursor protein in the binding to receptor sites. EMBO J. 1987 Nov;6(11):3449–3454. doi: 10.1002/j.1460-2075.1987.tb02668.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schatz G. The protein import system of mitochondria. J Biol Chem. 1996 Dec 13;271(50):31763–31766. doi: 10.1074/jbc.271.50.31763. [DOI] [PubMed] [Google Scholar]
  28. Schleiff E., Silvius J. R., Shore G. C. Direct membrane insertion of voltage-dependent anion-selective channel protein catalyzed by mitochondrial Tom20. J Cell Biol. 1999 May 31;145(5):973–978. doi: 10.1083/jcb.145.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Trimble W. S., Cowan D. M., Scheller R. H. VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4538–4542. doi: 10.1073/pnas.85.12.4538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Walter P., Johnson A. E. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol. 1994;10:87–119. doi: 10.1146/annurev.cb.10.110194.000511. [DOI] [PubMed] [Google Scholar]
  31. Zhuang Z. P., Marks B., McCauley R. B. The insertion of monoamine oxidase A into the outer membrane of rat liver mitochondria. J Biol Chem. 1992 Jan 5;267(1):591–596. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES