Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jul 15;349(Pt 2):651–656. doi: 10.1042/0264-6021:3490651

Enhancement of the thermostability and hydrolytic activity of xylanase by random gene shuffling.

H Shibuya 1, S Kaneko 1, K Hayashi 1
PMCID: PMC1221190  PMID: 10880366

Abstract

The thermostability of Streptomyces lividans xylanase B (SlxB-cat) was significantly increased by the replacement of its N-terminal region with the corresponding region from Thermomonospora fusca xylanase A (TfxA-cat) without observing a decrease in enzyme activity. In spite of the significant similarity between the amino acid sequences of the two xylanases, their thermostabilities are quite different. To facilitate an understanding of the contribution of structure to the thermostability observed, chimaeric enzymes were constructed by random gene shuffling and the thermostable chimaeric enzymes were selected for further study. A comparative study of the chimaeric and parental enzymes indicated that the N-terminus of TfxA-cat contributed to the observed thermostability. However, too many substitutions decreased both the thermostability and the activity of the enzyme. The mutants with the most desirable characteristics, Stx15 and Stx18, exhibited significant thermostabilities at 70 degrees C with optimum temperatures which were 20 degrees C higher than that of SlxB-cat and equal to that of TfxA-cat. The ability of these two chimaeric enzymes to produce reducing sugar from xylan was enhanced in comparison with the parental enzymes. These results suggest that these chimaeric enzymes inherit both their thermostability from TfxA-cat and their increased reactivity from SlxB-cat. Our study also demonstrates that random shuffling between a mesophilic enzyme and its thermophilic counterpart represents a facile approach for the improvement of the thermostability of a mesophilic enzyme.

Full Text

The Full Text of this article is available as a PDF (186.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arase A., Yomo T., Urabe I., Hata Y., Katsube Y., Okada H. Stabilization of xylanase by random mutagenesis. FEBS Lett. 1993 Jan 25;316(2):123–127. doi: 10.1016/0014-5793(93)81199-a. [DOI] [PubMed] [Google Scholar]
  2. Arnold F. H. Enzyme engineering reaches the boiling point. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2035–2036. doi: 10.1073/pnas.95.5.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Crameri A., Raillard S. A., Bermudez E., Stemmer W. P. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature. 1998 Jan 15;391(6664):288–291. doi: 10.1038/34663. [DOI] [PubMed] [Google Scholar]
  4. Dupont C., Roberge M., Shareck F., Morosoli R., Kluepfel D. Substrate-binding domains of glycanases from Streptomyces lividans: characterization of a new family of xylan-binding domains. Biochem J. 1998 Feb 15;330(Pt 1):41–45. doi: 10.1042/bj3300041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gerstein M., Lesk A. M., Chothia C. Structural mechanisms for domain movements in proteins. Biochemistry. 1994 Jun 7;33(22):6739–6749. doi: 10.1021/bi00188a001. [DOI] [PubMed] [Google Scholar]
  6. Gruber K., Klintschar G., Hayn M., Schlacher A., Steiner W., Kratky C. Thermophilic xylanase from Thermomyces lanuginosus: high-resolution X-ray structure and modeling studies. Biochemistry. 1998 Sep 29;37(39):13475–13485. doi: 10.1021/bi980864l. [DOI] [PubMed] [Google Scholar]
  7. Harris G. W., Pickersgill R. W., Connerton I., Debeire P., Touzel J. P., Breton C., Pérez S. Structural basis of the properties of an industrially relevant thermophilic xylanase. Proteins. 1997 Sep;29(1):77–86. [PubMed] [Google Scholar]
  8. Havukainen R., Törrönen A., Laitinen T., Rouvinen J. Covalent binding of three epoxyalkyl xylosides to the active site of endo-1,4-xylanase II from Trichoderma reesei. Biochemistry. 1996 Jul 23;35(29):9617–9624. doi: 10.1021/bi953052n. [DOI] [PubMed] [Google Scholar]
  9. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Irwin D., Jung E. D., Wilson D. B. Characterization and sequence of a Thermomonospora fusca xylanase. Appl Environ Microbiol. 1994 Mar;60(3):763–770. doi: 10.1128/aem.60.3.763-770.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaneko S., Kuno A., Muramatsu M., Iwamatsu S., Kusakabe I., Hayashi K. Purification and characterization of a family G/11 beta-xylanase from Streptomyces olivaceoviridis E-86. Biosci Biotechnol Biochem. 2000 Feb;64(2):447–451. doi: 10.1271/bbb.64.447. [DOI] [PubMed] [Google Scholar]
  12. Kluepfel D., Vats-Mehta S., Aumont F., Shareck F., Morosoli R. Purification and characterization of a new xylanase (xylanase B) produced by Streptomyces lividans 66. Biochem J. 1990 Apr 1;267(1):45–50. doi: 10.1042/bj2670045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lever M. A new reaction for colorimetric determination of carbohydrates. Anal Biochem. 1972 May;47(1):273–279. doi: 10.1016/0003-2697(72)90301-6. [DOI] [PubMed] [Google Scholar]
  14. Millward-Sadler S. J., Poole D. M., Henrissat B., Hazlewood G. P., Clarke J. H., Gilbert H. J. Evidence for a general role for high-affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Mol Microbiol. 1994 Jan;11(2):375–382. doi: 10.1111/j.1365-2958.1994.tb00317.x. [DOI] [PubMed] [Google Scholar]
  15. Muilu J., Törrönen A., Peräkylä M., Rouvinen J. Functional conformational changes of endo-1,4-xylanase II from Trichoderma reesei: a molecular dynamics study. Proteins. 1998 Jun 1;31(4):434–444. [PubMed] [Google Scholar]
  16. SMOGYI M. Notes on sugar determination. J Biol Chem. 1952 Mar;195(1):19–23. [PubMed] [Google Scholar]
  17. Schimmel P. R., Flory P. J. Conformational energies and configurational statistics of copolypeptides containing L-proline. J Mol Biol. 1968 May 28;34(1):105–120. doi: 10.1016/0022-2836(68)90237-4. [DOI] [PubMed] [Google Scholar]
  18. Shareck F., Roy C., Yaguchi M., Morosoli R., Kluepfel D. Sequences of three genes specifying xylanases in Streptomyces lividans. Gene. 1991 Oct 30;107(1):75–82. doi: 10.1016/0378-1119(91)90299-q. [DOI] [PubMed] [Google Scholar]
  19. Smith G. P. Applied evolution. The progeny of sexual PCR. Nature. 1994 Aug 4;370(6488):324–325. doi: 10.1038/370324a0. [DOI] [PubMed] [Google Scholar]
  20. Stemmer W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994 Aug 4;370(6488):389–391. doi: 10.1038/370389a0. [DOI] [PubMed] [Google Scholar]
  21. Törrönen A., Rouvinen J. Structural and functional properties of low molecular weight endo-1,4-beta-xylanases. J Biotechnol. 1997 Sep 16;57(1-3):137–149. doi: 10.1016/s0168-1656(97)00095-3. [DOI] [PubMed] [Google Scholar]
  22. Wakarchuk W. W., Sung W. L., Campbell R. L., Cunningham A., Watson D. C., Yaguchi M. Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds. Protein Eng. 1994 Nov;7(11):1379–1386. doi: 10.1093/protein/7.11.1379. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES