Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Aug 1;349(Pt 3):667–688. doi: 10.1042/bj3490667

Role of plasma membrane transporters in muscle metabolism.

A Zorzano 1, C Fandos 1, M Palacín 1
PMCID: PMC1221192  PMID: 10903126

Abstract

Muscle plays a major role in metabolism. Thus it is a major glucose-utilizing tissue in the absorptive state, and changes in muscle insulin-stimulated glucose uptake alter whole-body glucose disposal. In some conditions, muscle preferentially uses lipid substrates, such as fatty acids or ketone bodies. Furthermore, muscle is the main reservoir of amino acids and protein. The activity of many different plasma membrane transporters, such as glucose carriers and transporters of carnitine, creatine and amino acids, play a crucial role in muscle metabolism by catalysing the influx or the efflux of substrates across the cell surface. In some cases, the membrane transport process is subjected to intense regulatory control and may become a potential pharmacological target, as is the case with the glucose transporter GLUT4. The goal of this review is the molecular characterization of muscle membrane transporter proteins, as well as the analysis of their possible regulatory role.

Full Text

The Full Text of this article is available as a PDF (601.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AKEDO H., CHRISTENSEN H. N. Nature of insulin action on amino acid uptake by the isolated diaphragm. J Biol Chem. 1962 Jan;237:118–122. [PubMed] [Google Scholar]
  2. Abumrad N. A., el-Maghrabi M. R., Amri E. Z., Lopez E., Grimaldi P. A. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem. 1993 Aug 25;268(24):17665–17668. [PubMed] [Google Scholar]
  3. Abumrad N., Coburn C., Ibrahimi A. Membrane proteins implicated in long-chain fatty acid uptake by mammalian cells: CD36, FATP and FABPm. Biochim Biophys Acta. 1999 Oct 18;1441(1):4–13. doi: 10.1016/s1388-1981(99)00137-7. [DOI] [PubMed] [Google Scholar]
  4. Adibi S. A. Metabolism of branched-chain amino acids in altered nutrition. Metabolism. 1976 Nov;25(11):1287–1302. doi: 10.1016/s0026-0495(76)80012-1. [DOI] [PubMed] [Google Scholar]
  5. Aitman T. J., Glazier A. M., Wallace C. A., Cooper L. D., Norsworthy P. J., Wahid F. N., Al-Majali K. M., Trembling P. M., Mann C. J., Shoulders C. C. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet. 1999 Jan;21(1):76–83. doi: 10.1038/5013. [DOI] [PubMed] [Google Scholar]
  6. Albritton L. M., Kim J. W., Tseng L., Cunningham J. M. Envelope-binding domain in the cationic amino acid transporter determines the host range of ecotropic murine retroviruses. J Virol. 1993 Apr;67(4):2091–2096. doi: 10.1128/jvi.67.4.2091-2096.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Aledo J. C., Hajduch E., Darakhshan F., Hundal H. S. Analyses of the co-localization of cellubrevin and the GLUT4 glucose transporter in rat and human insulin-responsive tissues. FEBS Lett. 1996 Oct 21;395(2-3):211–216. doi: 10.1016/0014-5793(96)01044-7. [DOI] [PubMed] [Google Scholar]
  8. Aledo J. C., Lavoie L., Volchuk A., Keller S. R., Klip A., Hundal H. S. Identification and characterization of two distinct intracellular GLUT4 pools in rat skeletal muscle: evidence for an endosomal and an insulin-sensitive GLUT4 compartment. Biochem J. 1997 Aug 1;325(Pt 3):727–732. doi: 10.1042/bj3250727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Aoki T. T., Brennan M. F., Müller W. A., Moore F. D., Cahill G. F., Jr Effect of insulin on muscle glutamate uptake. Whole blood versus plasma glutamate analysis. J Clin Invest. 1972 Nov;51(11):2889–2894. doi: 10.1172/JCI107112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Arriza J. L., Eliasof S., Kavanaugh M. P., Amara S. G. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4155–4160. doi: 10.1073/pnas.94.8.4155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Arriza J. L., Fairman W. A., Wadiche J. I., Murdoch G. H., Kavanaugh M. P., Amara S. G. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci. 1994 Sep;14(9):5559–5569. doi: 10.1523/JNEUROSCI.14-09-05559.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bahl J. J., Bressler R. The pharmacology of carnitine. Annu Rev Pharmacol Toxicol. 1987;27:257–277. doi: 10.1146/annurev.pa.27.040187.001353. [DOI] [PubMed] [Google Scholar]
  13. Baillie A. G., Coburn C. T., Abumrad N. A. Reversible binding of long-chain fatty acids to purified FAT, the adipose CD36 homolog. J Membr Biol. 1996 Sep;153(1):75–81. doi: 10.1007/s002329900111. [DOI] [PubMed] [Google Scholar]
  14. Baker S. K., McCullagh K. J., Bonen A. Training intensity-dependent and tissue-specific increases in lactate uptake and MCT-1 in heart and muscle. J Appl Physiol (1985) 1998 Mar;84(3):987–994. doi: 10.1152/jappl.1998.84.3.987. [DOI] [PubMed] [Google Scholar]
  15. Baldini G., Hohman R., Charron M. J., Lodish H. F. Insulin and nonhydrolyzable GTP analogs induce translocation of GLUT 4 to the plasma membrane in alpha-toxin-permeabilized rat adipose cells. J Biol Chem. 1991 Mar 5;266(7):4037–4040. [PubMed] [Google Scholar]
  16. Bangsbo J., Aagaard T., Olsen M., Kiens B., Turcotte L. P., Richter E. A. Lactate and H+ uptake in inactive muscles during intense exercise in man. J Physiol. 1995 Oct 1;488(Pt 1):219–229. doi: 10.1113/jphysiol.1995.sp020960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bangsbo J., Gollnick P. D., Graham T. E., Saltin B. Substrates for muscle glycogen synthesis in recovery from intense exercise in man. J Physiol. 1991 Mar;434:423–440. doi: 10.1113/jphysiol.1991.sp018478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Barnwell L. F., Chaudhuri G., Townsel J. G. Cloning and sequencing of a cDNA encoding a novel member of the human brain GABA/noradrenaline neurotransmitter transporter family. Gene. 1995 Jul 4;159(2):287–288. doi: 10.1016/0378-1119(95)00104-e. [DOI] [PubMed] [Google Scholar]
  19. Barrett M. P., Walmsley A. R., Gould G. W. Structure and function of facilitative sugar transporters. Curr Opin Cell Biol. 1999 Aug;11(4):496–502. doi: 10.1016/s0955-0674(99)80072-6. [DOI] [PubMed] [Google Scholar]
  20. Beatty C. H., Curtis S., Young M. K., Bocek R. M. Oxidation of amino acids by red and white muscle fiber groups. Am J Physiol. 1974 Aug;227(2):268–272. doi: 10.1152/ajplegacy.1974.227.2.268. [DOI] [PubMed] [Google Scholar]
  21. Bennett E. R., Kanner B. I. The membrane topology of GAT-1, a (Na+ + Cl-)-coupled gamma-aminobutyric acid transporter from rat brain. J Biol Chem. 1997 Jan 10;272(2):1203–1210. doi: 10.1074/jbc.272.2.1203. [DOI] [PubMed] [Google Scholar]
  22. Berger M., Hagg S., Ruderman N. B. Glucose metabolism in perfused skeletal muscle. Interaction of insulin and exercise on glucose uptake. Biochem J. 1975 Jan;146(1):231–238. doi: 10.1042/bj1460231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Berk P. D., Wada H., Horio Y., Potter B. J., Sorrentino D., Zhou S. L., Isola L. M., Stump D., Kiang C. L., Thung S. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related. Proc Natl Acad Sci U S A. 1990 May;87(9):3484–3488. doi: 10.1073/pnas.87.9.3484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Blakely R. D., De Felice L. J., Hartzell H. C. Molecular physiology of norepinephrine and serotonin transporters. J Exp Biol. 1994 Nov;196:263–281. doi: 10.1242/jeb.196.1.263. [DOI] [PubMed] [Google Scholar]
  25. Block N. E., Menick D. R., Robinson K. A., Buse M. G. Effect of denervation on the expression of two glucose transporter isoforms in rat hindlimb muscle. J Clin Invest. 1991 Nov;88(5):1546–1552. doi: 10.1172/JCI115465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Bonadonna R. C., Del Prato S., Saccomani M. P., Bonora E., Gulli G., Ferrannini E., Bier D., Cobelli C., DeFronzo R. A. Transmembrane glucose transport in skeletal muscle of patients with non-insulin-dependent diabetes. J Clin Invest. 1993 Jul;92(1):486–494. doi: 10.1172/JCI116592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Bonadonna R. C., Saccomani M. P., Cobelli C., DeFronzo R. A. Effect of insulin on system A amino acid transport in human skeletal muscle. J Clin Invest. 1993 Feb;91(2):514–521. doi: 10.1172/JCI116230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Bonen A., Dyck D. J., Ibrahimi A., Abumrad N. A. Muscle contractile activity increases fatty acid metabolism and transport and FAT/CD36. Am J Physiol. 1999 Apr;276(4 Pt 1):E642–E649. doi: 10.1152/ajpendo.1999.276.4.E642. [DOI] [PubMed] [Google Scholar]
  29. Bonen A., Dyck D. J., Luiken J. J. Skeletal muscle fatty acid transport and transporters. Adv Exp Med Biol. 1998;441:193–205. doi: 10.1007/978-1-4899-1928-1_18. [DOI] [PubMed] [Google Scholar]
  30. Bonen A., McCullagh K. J. Effects of exercise on lactate transport into mouse skeletal muscles. Can J Appl Physiol. 1994 Sep;19(3):275–285. doi: 10.1139/h94-023. [DOI] [PubMed] [Google Scholar]
  31. Bonen A., McCullagh K. J., Putman C. T., Hultman E., Jones N. L., Heigenhauser G. J. Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate. Am J Physiol. 1998 Jan;274(1 Pt 1):E102–E107. doi: 10.1152/ajpendo.1998.274.1.E102. [DOI] [PubMed] [Google Scholar]
  32. Bonen A., McDermott J. C., Tan M. H. Glycogenesis and glyconeogenesis in skeletal muscle: effects of pH and hormones. Am J Physiol. 1990 Apr;258(4 Pt 1):E693–E700. doi: 10.1152/ajpendo.1990.258.4.E693. [DOI] [PubMed] [Google Scholar]
  33. Borden L. A., Smith K. E., Gustafson E. L., Branchek T. A., Weinshank R. L. Cloning and expression of a betaine/GABA transporter from human brain. J Neurochem. 1995 Mar;64(3):977–984. doi: 10.1046/j.1471-4159.1995.64030977.x. [DOI] [PubMed] [Google Scholar]
  34. Borsani G., Bassi M. T., Sperandeo M. P., De Grandi A., Buoninconti A., Riboni M., Manzoni M., Incerti B., Pepe A., Andria G. SLC7A7, encoding a putative permease-related protein, is mutated in patients with lysinuric protein intolerance. Nat Genet. 1999 Mar;21(3):297–301. doi: 10.1038/6815. [DOI] [PubMed] [Google Scholar]
  35. Bressler R., Grosso D. S., Roeske W. R. Carrier-mediated taurine uptake in the fetal mouse heart. Trans Assoc Am Physicians. 1977;90:257–269. [PubMed] [Google Scholar]
  36. Broquist H. P. Carnitine biosynthesis and function. Introductory remarks. Fed Proc. 1982 Oct;41(12):2840–2842. [PubMed] [Google Scholar]
  37. Bröer S., Rahman B., Pellegri G., Pellerin L., Martin J. L., Verleysdonk S., Hamprecht B., Magistretti P. J. Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem. 1997 Nov 28;272(48):30096–30102. doi: 10.1074/jbc.272.48.30096. [DOI] [PubMed] [Google Scholar]
  38. Bröer S., Schneider H. P., Bröer A., Rahman B., Hamprecht B., Deitmer J. W. Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem J. 1998 Jul 1;333(Pt 1):167–174. doi: 10.1042/bj3330167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Burant C. F., Takeda J., Brot-Laroche E., Bell G. I., Davidson N. O. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem. 1992 Jul 25;267(21):14523–14526. [PubMed] [Google Scholar]
  40. Burlina A. P., Sershen H., Debler E. A., Lajtha A. Uptake of acetyl-L-carnitine in the brain. Neurochem Res. 1989 May;14(5):489–493. doi: 10.1007/BF00964865. [DOI] [PubMed] [Google Scholar]
  41. Burwinkel B., Kreuder J., Schweitzer S., Vorgerd M., Gempel K., Gerbitz K. D., Kilimann M. W. Carnitine transporter OCTN2 mutations in systemic primary carnitine deficiency: a novel Arg169Gln mutation and a recurrent Arg282ter mutation associated with an unconventional splicing abnormality. Biochem Biophys Res Commun. 1999 Aug 2;261(2):484–487. doi: 10.1006/bbrc.1999.1060. [DOI] [PubMed] [Google Scholar]
  42. Calera M. R., Martinez C., Liu H., Jack A. K., Birnbaum M. J., Pilch P. F. Insulin increases the association of Akt-2 with Glut4-containing vesicles. J Biol Chem. 1998 Mar 27;273(13):7201–7204. doi: 10.1074/jbc.273.13.7201. [DOI] [PubMed] [Google Scholar]
  43. Calonge M. J., Gasparini P., Chillarón J., Chillón M., Gallucci M., Rousaud F., Zelante L., Testar X., Dallapiccola B., Di Silverio F. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat Genet. 1994 Apr;6(4):420–425. doi: 10.1038/ng0494-420. [DOI] [PubMed] [Google Scholar]
  44. Cambridge G., Stern C. M. The uptake of tritium-labelled carnitine by monolayer cultures of human fetal muscle and its potential as a label in cytotoxicity studies. Clin Exp Immunol. 1981 Apr;44(1):211–219. [PMC free article] [PubMed] [Google Scholar]
  45. Camps M., Castelló A., Muñoz P., Monfar M., Testar X., Palacín M., Zorzano A. Effect of diabetes and fasting on GLUT-4 (muscle/fat) glucose-transporter expression in insulin-sensitive tissues. Heterogeneous response in heart, red and white muscle. Biochem J. 1992 Mar 15;282(Pt 3):765–772. doi: 10.1042/bj2820765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Carpenter L., Poole R. C., Halestrap A. P. Cloning and sequencing of the monocarboxylate transporter from mouse Ehrlich Lettré tumour cell confirms its identity as MCT1 and demonstrates that glycosylation is not required for MCT1 function. Biochim Biophys Acta. 1996 Mar 13;1279(2):157–163. doi: 10.1016/0005-2736(95)00254-5. [DOI] [PubMed] [Google Scholar]
  47. Casla A., Rovira A., Wells J. A., Dohm G. L. Increased glucose transporter (GLUT4) protein expression in hyperthyroidism. Biochem Biophys Res Commun. 1990 Aug 31;171(1):182–188. doi: 10.1016/0006-291x(90)91374-2. [DOI] [PubMed] [Google Scholar]
  48. Castelló A., Cadefau J., Cussó R., Testar X., Hesketh J. E., Palacín M., Zorzano A. GLUT-4 and GLUT-1 glucose transporter expression is differentially regulated by contractile activity in skeletal muscle. J Biol Chem. 1993 Jul 15;268(20):14998–15003. [PubMed] [Google Scholar]
  49. Castelló A., Rodríguez-Manzaneque J. C., Camps M., Pérez-Castillo A., Testar X., Palacín M., Santos A., Zorzano A. Perinatal hypothyroidism impairs the normal transition of GLUT4 and GLUT1 glucose transporters from fetal to neonatal levels in heart and brown adipose tissue. Evidence for tissue-specific regulation of GLUT4 expression by thyroid hormone. J Biol Chem. 1994 Feb 25;269(8):5905–5912. [PubMed] [Google Scholar]
  50. Chang T. W., Goldberg A. L. The metabolic fates of amino acids and the formation of glutamine in skeletal muscle. J Biol Chem. 1978 May 25;253(10):3685–3693. [PubMed] [Google Scholar]
  51. Chapoy P. R., Angelini C., Brown W. J., Stiff J. E., Shug A. L., Cederbaum S. D. Systemic carnitine deficiency--a treatable inherited lipid-storage disease presenting as Reye's syndrome. N Engl J Med. 1980 Dec 11;303(24):1389–1394. doi: 10.1056/NEJM198012113032403. [DOI] [PubMed] [Google Scholar]
  52. Chaudhry F. A., Reimer R. J., Krizaj D., Barber D., Storm-Mathisen J., Copenhagen D. R., Edwards R. H. Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell. 1999 Dec 23;99(7):769–780. doi: 10.1016/s0092-8674(00)81674-8. [DOI] [PubMed] [Google Scholar]
  53. Cheatham B., Volchuk A., Kahn C. R., Wang L., Rhodes C. J., Klip A. Insulin-stimulated translocation of GLUT4 glucose transporters requires SNARE-complex proteins. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15169–15173. doi: 10.1073/pnas.93.26.15169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Chilcote T. J., Galli T., Mundigl O., Edelmann L., McPherson P. S., Takei K., De Camilli P. Cellubrevin and synaptobrevins: similar subcellular localization and biochemical properties in PC12 cells. J Cell Biol. 1995 Apr;129(1):219–231. doi: 10.1083/jcb.129.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Chizzonite R. A., Zak R. Regulation of myosin isoenzyme composition in fetal and neonatal rat ventricle by endogenous thyroid hormones. J Biol Chem. 1984 Oct 25;259(20):12628–12632. [PubMed] [Google Scholar]
  56. Christiansen R. Z., Bremer J. Active transport of butyrobetaine and carnitine into isolated liver cells. Biochim Biophys Acta. 1976 Nov 2;448(4):562–577. doi: 10.1016/0005-2736(76)90110-3. [DOI] [PubMed] [Google Scholar]
  57. Clark C. M., Jr Carbohydrate metabolism in the isolated fetal rat heart. Am J Physiol. 1971 Mar;220(3):583–588. doi: 10.1152/ajplegacy.1971.220.3.583. [DOI] [PubMed] [Google Scholar]
  58. Closs E. I., Albritton L. M., Kim J. W., Cunningham J. M. Identification of a low affinity, high capacity transporter of cationic amino acids in mouse liver. J Biol Chem. 1993 Apr 5;268(10):7538–7544. [PubMed] [Google Scholar]
  59. Closs E. I., Lyons C. R., Kelly C., Cunningham J. M. Characterization of the third member of the MCAT family of cationic amino acid transporters. Identification of a domain that determines the transport properties of the MCAT proteins. J Biol Chem. 1993 Oct 5;268(28):20796–20800. [PubMed] [Google Scholar]
  60. Coderre L., Kandror K. V., Vallega G., Pilch P. F. Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. J Biol Chem. 1995 Nov 17;270(46):27584–27588. doi: 10.1074/jbc.270.46.27584. [DOI] [PubMed] [Google Scholar]
  61. Coderre L., Monfar M. M., Chen K. S., Heydrick S. J., Kurowski T. G., Ruderman N. B., Pilch P. F. Alteration in the expression of GLUT-1 and GLUT-4 protein and messenger RNA levels in denervated rat muscles. Endocrinology. 1992 Oct;131(4):1821–1825. doi: 10.1210/endo.131.4.1396328. [DOI] [PubMed] [Google Scholar]
  62. Cormont M., Bortoluzzi M. N., Gautier N., Mari M., van Obberghen E., Le Marchand-Brustel Y. Potential role of Rab4 in the regulation of subcellular localization of Glut4 in adipocytes. Mol Cell Biol. 1996 Dec;16(12):6879–6886. doi: 10.1128/mcb.16.12.6879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Cormont M., Tanti J. F., Zahraoui A., Van Obberghen E., Tavitian A., Le Marchand-Brustel Y. Insulin and okadaic acid induce Rab4 redistribution in adipocytes. J Biol Chem. 1993 Sep 15;268(26):19491–19497. [PubMed] [Google Scholar]
  64. Dai W., Vinnakota S., Qian X., Kunze D. L., Sarkar H. K. Molecular characterization of the human CRT-1 creatine transporter expressed in Xenopus oocytes. Arch Biochem Biophys. 1999 Jan 1;361(1):75–84. doi: 10.1006/abbi.1998.0959. [DOI] [PubMed] [Google Scholar]
  65. Daniels C., Noy N., Zakim D. Rates of hydration of fatty acids bound to unilamellar vesicles of phosphatidylcholine or to albumin. Biochemistry. 1985 Jun 18;24(13):3286–3292. doi: 10.1021/bi00334a032. [DOI] [PubMed] [Google Scholar]
  66. Daro E., van der Sluijs P., Galli T., Mellman I. Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9559–9564. doi: 10.1073/pnas.93.18.9559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. De Bruijne A. W., Vreeburg H., Van Steveninck J. Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system. Biochim Biophys Acta. 1983 Aug 10;732(3):562–568. doi: 10.1016/0005-2736(83)90232-8. [DOI] [PubMed] [Google Scholar]
  68. DeFronzo R. A. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988 Jun;37(6):667–687. doi: 10.2337/diab.37.6.667. [DOI] [PubMed] [Google Scholar]
  69. Dela F., Handberg A., Mikines K. J., Vinten J., Galbo H. GLUT 4 and insulin receptor binding and kinase activity in trained human muscle. J Physiol. 1993 Sep;469:615–624. doi: 10.1113/jphysiol.1993.sp019833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Dohm G. L., Tapscott E. B., Pories W. J., Dabbs D. J., Flickinger E. G., Meelheim D., Fushiki T., Atkinson S. M., Elton C. W., Caro J. F. An in vitro human muscle preparation suitable for metabolic studies. Decreased insulin stimulation of glucose transport in muscle from morbidly obese and diabetic subjects. J Clin Invest. 1988 Aug;82(2):486–494. doi: 10.1172/JCI113622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Dubouchaud H., Granier P., Mercier J., Le Peuch C., Prefaut C. Lactate uptake by skeletal muscle sarcolemmal vesicles decreases after 4 wk of hindlimb unweighting in rats. J Appl Physiol (1985) 1996 Feb;80(2):416–421. doi: 10.1152/jappl.1996.80.2.416. [DOI] [PubMed] [Google Scholar]
  72. Elsas L. J., Albrecht I., Rosenberg L. E. Insulin stimulation of amino acid uptake in rat diaphragm. Relationship to protein sythesis. J Biol Chem. 1968 Apr 25;243(8):1846–1853. [PubMed] [Google Scholar]
  73. Elsas L. J., Wheeler F. B., Danner D. J., DeHaan R. L. Amino acid transport by aggregates of cultured chicken heart cells. Effect of insulin. J Biol Chem. 1975 Dec 25;250(24):9381–9390. [PubMed] [Google Scholar]
  74. Engel A. G., Angelini C. Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome. Science. 1973 Mar 2;179(4076):899–902. doi: 10.1126/science.179.4076.899. [DOI] [PubMed] [Google Scholar]
  75. Enrique-Tarancón G., Marti L., Morin N., Lizcano J. M., Unzeta M., Sevilla L., Camps M., Palacín M., Testar X., Carpéné C. Role of semicarbazide-sensitive amine oxidase on glucose transport and GLUT4 recruitment to the cell surface in adipose cells. J Biol Chem. 1998 Apr 3;273(14):8025–8032. doi: 10.1074/jbc.273.14.8025. [DOI] [PubMed] [Google Scholar]
  76. Etgen G. J., Jr, Farrar R. P., Ivy J. L. Effect of chronic electrical stimulation on GLUT-4 protein content in fast-twitch muscle. Am J Physiol. 1993 Apr;264(4 Pt 2):R816–R819. doi: 10.1152/ajpregu.1993.264.4.R816. [DOI] [PubMed] [Google Scholar]
  77. Fairman W. A., Vandenberg R. J., Arriza J. L., Kavanaugh M. P., Amara S. G. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature. 1995 Jun 15;375(6532):599–603. doi: 10.1038/375599a0. [DOI] [PubMed] [Google Scholar]
  78. Feliubadaló L., Font M., Purroy J., Rousaud F., Estivill X., Nunes V., Golomb E., Centola M., Aksentijevich I., Kreiss Y. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Nat Genet. 1999 Sep;23(1):52–57. doi: 10.1038/12652. [DOI] [PubMed] [Google Scholar]
  79. Fischer Y., Thomas J., Holman G. D., Rose H., Kammermeier H. Contraction-independent effects of catecholamines on glucose transport in isolated rat cardiomyocytes. Am J Physiol. 1996 Apr;270(4 Pt 1):C1204–C1210. doi: 10.1152/ajpcell.1996.270.4.C1204. [DOI] [PubMed] [Google Scholar]
  80. Fischer Y., Thomas J., Sevilla L., Muñoz P., Becker C., Holman G., Kozka I. J., Palacín M., Testar X., Kammermeier H. Insulin-induced recruitment of glucose transporter 4 (GLUT4) and GLUT1 in isolated rat cardiac myocytes. Evidence of the existence of different intracellular GLUT4 vesicle populations. J Biol Chem. 1997 Mar 14;272(11):7085–7092. doi: 10.1074/jbc.272.11.7085. [DOI] [PubMed] [Google Scholar]
  81. Fletcher E. J., Johnston G. A. Regional heterogeneity of L-glutamate and L-aspartate high-affinity uptake systems in the rat CNS. J Neurochem. 1991 Sep;57(3):911–914. doi: 10.1111/j.1471-4159.1991.tb08237.x. [DOI] [PubMed] [Google Scholar]
  82. Friedman J. E., Sherman W. M., Reed M. J., Elton C. W., Dohm G. L. Exercise training increases glucose transporter protein GLUT-4 in skeletal muscle of obese Zucker (fa/fa) rats. FEBS Lett. 1990 Jul 30;268(1):13–16. doi: 10.1016/0014-5793(90)80960-q. [DOI] [PubMed] [Google Scholar]
  83. Galli T., Chilcote T., Mundigl O., Binz T., Niemann H., De Camilli P. Tetanus toxin-mediated cleavage of cellubrevin impairs exocytosis of transferrin receptor-containing vesicles in CHO cells. J Cell Biol. 1994 Jun;125(5):1015–1024. doi: 10.1083/jcb.125.5.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Garber A. J., Karl I. E., Kipnis D. M. Alanine and glutamine synthesis and release from skeletal muscle. I. Glycolysis and amino acid release. J Biol Chem. 1976 Feb 10;251(3):826–835. [PubMed] [Google Scholar]
  85. Garcia C. K., Brown M. S., Pathak R. K., Goldstein J. L. cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J Biol Chem. 1995 Jan 27;270(4):1843–1849. doi: 10.1074/jbc.270.4.1843. [DOI] [PubMed] [Google Scholar]
  86. Garcia C. K., Goldstein J. L., Pathak R. K., Anderson R. G., Brown M. S. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell. 1994 Mar 11;76(5):865–873. doi: 10.1016/0092-8674(94)90361-1. [DOI] [PubMed] [Google Scholar]
  87. Garcia C. K., Li X., Luna J., Francke U. cDNA cloning of the human monocarboxylate transporter 1 and chromosomal localization of the SLC16A1 locus to 1p13.2-p12. Genomics. 1994 Sep 15;23(2):500–503. doi: 10.1006/geno.1994.1532. [DOI] [PubMed] [Google Scholar]
  88. Gladden L. B. Net lactate uptake during progressive steady-level contractions in canine skeletal muscle. J Appl Physiol (1985) 1991 Aug;71(2):514–520. doi: 10.1152/jappl.1991.71.2.514. [DOI] [PubMed] [Google Scholar]
  89. Gladden L. B., Yates J. W. Lactic acid infusion in dogs: effects of varying infusate pH. J Appl Physiol Respir Environ Exerc Physiol. 1983 May;54(5):1254–1260. doi: 10.1152/jappl.1983.54.5.1254. [DOI] [PubMed] [Google Scholar]
  90. Glatz J. F., Luiken J. J., van Nieuwenhoven F. A., Van der Vusse G. J. Molecular mechanism of cellular uptake and intracellular translocation of fatty acids. Prostaglandins Leukot Essent Fatty Acids. 1997 Jul;57(1):3–9. doi: 10.1016/s0952-3278(97)90485-3. [DOI] [PubMed] [Google Scholar]
  91. Goldberg A. L., Chang T. W. Regulation and significance of amino acid metabolism in skeletal muscle. Fed Proc. 1978 Jul;37(9):2301–2307. [PubMed] [Google Scholar]
  92. Gotoda T., Iizuka Y., Kato N., Osuga J., Bihoreau M. T., Murakami T., Yamori Y., Shimano H., Ishibashi S., Yamada N. Absence of Cd36 mutation in the original spontaneously hypertensive rats with insulin resistance. Nat Genet. 1999 Jul;22(3):226–228. doi: 10.1038/10285. [DOI] [PubMed] [Google Scholar]
  93. Green A. L., Hultman E., Macdonald I. A., Sewell D. A., Greenhaff P. L. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol. 1996 Nov;271(5 Pt 1):E821–E826. doi: 10.1152/ajpendo.1996.271.5.E821. [DOI] [PubMed] [Google Scholar]
  94. Grunewald M., Bendahan A., Kanner B. I. Biotinylation of single cysteine mutants of the glutamate transporter GLT-1 from rat brain reveals its unusual topology. Neuron. 1998 Sep;21(3):623–632. doi: 10.1016/s0896-6273(00)80572-3. [DOI] [PubMed] [Google Scholar]
  95. Guerrero-Ontiveros M. L., Wallimann T. Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: down-regulation of the expression of creatine transporter isoforms in skeletal muscle. Mol Cell Biochem. 1998 Jul;184(1-2):427–437. [PubMed] [Google Scholar]
  96. Guimbal C., Kilimann M. W. A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J Biol Chem. 1993 Apr 25;268(12):8418–8421. [PubMed] [Google Scholar]
  97. Guimbal C., Kilimann M. W. A creatine transporter cDNA from Torpedo illustrates structure/function relationships in the GABA/noradrenaline transporter family. J Mol Biol. 1994 Aug 12;241(2):317–324. doi: 10.1006/jmbi.1994.1507. [DOI] [PubMed] [Google Scholar]
  98. Gumà A., Castelló A., Testar X., Palacín M., Zorzano A. Differential sensitivity of insulin- and adaptive-regulation-induced system A activation to microtubular function in skeletal muscle. Biochem J. 1992 Jan 15;281(Pt 2):407–411. doi: 10.1042/bj2810407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Gumà A., Mora C., Santalucía T., Viñals F., Testar X., Palacín M., Zorzano A. System A transport activity is stimulated in skeletal muscle in response to diabetes. FEBS Lett. 1992 Sep 21;310(1):51–54. doi: 10.1016/0014-5793(92)81144-b. [DOI] [PubMed] [Google Scholar]
  100. Gumà A., Testar X., Palacín M., Zorzano A. Insulin-stimulated alpha-(methyl)aminoisobutyric acid uptake in skeletal muscle. Evidence for a short-term activation of uptake independent of Na+ electrochemical gradient and protein synthesis. Biochem J. 1988 Aug 1;253(3):625–629. doi: 10.1042/bj2530625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Gumà A., Viñals F., Testar X., Palacín M., Zorzano A. Regulation of System A amino-acid transport activity by phospholipase C and cAMP-inducing agents in skeletal muscle: modulation of insulin action. Biochim Biophys Acta. 1993 Mar 10;1176(1-2):155–161. doi: 10.1016/0167-4889(93)90191-q. [DOI] [PubMed] [Google Scholar]
  102. Hager S. R., Pastorek D., Jochen A. L., Meier D. Divergence between GLUT4 mRNA and protein abundance in skeletal muscle of insulin resistant rats. Biochem Biophys Res Commun. 1991 Nov 27;181(1):240–245. doi: 10.1016/s0006-291x(05)81408-1. [DOI] [PubMed] [Google Scholar]
  103. Halestrap A. P., Price N. T. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J. 1999 Oct 15;343(Pt 2):281–299. [PMC free article] [PubMed] [Google Scholar]
  104. Hamilton J. A. Fatty acid transport: difficult or easy? J Lipid Res. 1998 Mar;39(3):467–481. [PubMed] [Google Scholar]
  105. Harris R. C., Söderlund K., Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 1992 Sep;83(3):367–374. doi: 10.1042/cs0830367. [DOI] [PubMed] [Google Scholar]
  106. Hashimoto N., Suzuki F., Tamai I., Nikaido H., Kuwajima M., Hayakawa J., Tsuji A. Gene-dose effect on carnitine transport activity in embryonic fibroblasts of JVS mice as a model of human carnitine transporter deficiency. Biochem Pharmacol. 1998 May 15;55(10):1729–1732. doi: 10.1016/s0006-2952(97)00670-9. [DOI] [PubMed] [Google Scholar]
  107. Haugland R. B., Chang D. T. Insulin effect on creatine transport in skelatal muscle (38464). Proc Soc Exp Biol Med. 1975 Jan;148(1):1–4. [PubMed] [Google Scholar]
  108. Hirsch D., Stahl A., Lodish H. F. A family of fatty acid transporters conserved from mycobacterium to man. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8625–8629. doi: 10.1073/pnas.95.15.8625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Hirshman M. F., Goodyear L. J., Wardzala L. J., Horton E. D., Horton E. S. Identification of an intracellular pool of glucose transporters from basal and insulin-stimulated rat skeletal muscle. J Biol Chem. 1990 Jan 15;265(2):987–991. [PubMed] [Google Scholar]
  110. Hoenack C., Roesen P. Inhibition of angiotensin type 1 receptor prevents decline of glucose transporter (GLUT4) in diabetic rat heart. Diabetes. 1996 Jan;45 (Suppl 1):S82–S87. doi: 10.2337/diab.45.1.s82. [DOI] [PubMed] [Google Scholar]
  111. Hofmann S., Pette D. Low-frequency stimulation of rat fast-twitch muscle enhances the expression of hexokinase II and both the translocation and expression of glucose transporter 4 (GLUT-4). Eur J Biochem. 1994 Jan 15;219(1-2):307–315. doi: 10.1111/j.1432-1033.1994.tb19942.x. [DOI] [PubMed] [Google Scholar]
  112. Houmard J. A., Egan P. C., Neufer P. D., Friedman J. E., Wheeler W. S., Israel R. G., Dohm G. L. Elevated skeletal muscle glucose transporter levels in exercise-trained middle-aged men. Am J Physiol. 1991 Oct;261(4 Pt 1):E437–E443. doi: 10.1152/ajpendo.1991.261.4.E437. [DOI] [PubMed] [Google Scholar]
  113. Hui T. Y., Frohnert B. I., Smith A. J., Schaffer J. E., Bernlohr D. A. Characterization of the murine fatty acid transport protein gene and its insulin response sequence. J Biol Chem. 1998 Oct 16;273(42):27420–27429. doi: 10.1074/jbc.273.42.27420. [DOI] [PubMed] [Google Scholar]
  114. Hundal H. S., Ahmed A., Gumà A., Mitsumoto Y., Marette A., Rennie M. J., Klip A. Biochemical and immunocytochemical localization of the 'GLUT5 glucose transporter' in human skeletal muscle. Biochem J. 1992 Sep 1;286(Pt 2):339–343. doi: 10.1042/bj2860339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Hundal H. S., Rennie M. J., Watt P. W. Characteristics of L-glutamine transport in perfused rat skeletal muscle. J Physiol. 1987 Dec;393:283–305. doi: 10.1113/jphysiol.1987.sp016824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Hundal H. S., Rennie M. J., Watt P. W. Characteristics of acidic, basic and neutral amino acid transport in the perfused rat hindlimb. J Physiol. 1989 Jan;408:93–114. doi: 10.1113/jphysiol.1989.sp017449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Hutson S. M., Cree T. C., Harper A. E. Regulation of leucine and alpha-ketoisocaproate metabolism in skeletal muscle. J Biol Chem. 1978 Nov 25;253(22):8126–8133. [PubMed] [Google Scholar]
  118. Ibberson M., Uldry M., Thorens B. GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues. J Biol Chem. 2000 Feb 18;275(7):4607–4612. doi: 10.1074/jbc.275.7.4607. [DOI] [PubMed] [Google Scholar]
  119. Ibrahimi A., Bonen A., Blinn W. D., Hajri T., Li X., Zhong K., Cameron R., Abumrad N. A. Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J Biol Chem. 1999 Sep 17;274(38):26761–26766. doi: 10.1074/jbc.274.38.26761. [DOI] [PubMed] [Google Scholar]
  120. Ibrahimi A., Sfeir Z., Magharaie H., Amri E. Z., Grimaldi P., Abumrad N. A. Expression of the CD36 homolog (FAT) in fibroblast cells: effects on fatty acid transport. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2646–2651. doi: 10.1073/pnas.93.7.2646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Isola L. M., Zhou S. L., Kiang C. L., Stump D. D., Bradbury M. W., Berk P. D. 3T3 fibroblasts transfected with a cDNA for mitochondrial aspartate aminotransferase express plasma membrane fatty acid-binding protein and saturable fatty acid uptake. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9866–9870. doi: 10.1073/pnas.92.21.9866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Iwata H., Kim B. K., Fukui Y., Baba A. Neural regulation of taurine transport in skeletal muscle. Adv Exp Med Biol. 1987;217:199–205. doi: 10.1007/978-1-4899-0405-8_21. [DOI] [PubMed] [Google Scholar]
  123. Iwata H., Obara T., Kim B. K., Baba A. Regulation of taurine transport in rat skeletal muscle. J Neurochem. 1986 Jul;47(1):158–163. doi: 10.1111/j.1471-4159.1986.tb02844.x. [DOI] [PubMed] [Google Scholar]
  124. Iyer G. S., Krahe R., Goodwin L. A., Doggett N. A., Siciliano M. J., Funanage V. L., Proujansky R. Identification of a testis-expressed creatine transporter gene at 16p11.2 and confirmation of the X-linked locus to Xq28. Genomics. 1996 May 15;34(1):143–146. doi: 10.1006/geno.1996.0254. [DOI] [PubMed] [Google Scholar]
  125. Jackson V. N., Price N. T., Halestrap A. P. cDNA cloning of MCT1, a monocarboxylate transporter from rat skeletal muscle. Biochim Biophys Acta. 1995 Sep 13;1238(2):193–196. doi: 10.1016/0005-2736(95)00160-5. [DOI] [PubMed] [Google Scholar]
  126. Javierre C., Lizarraga M. A., Ventura J. L., Garrido E., Segura R. Creatine supplementation does not improve physical performance in a 150 m race. Rev Esp Fisiol. 1997 Dec;53(4):343–348. [PubMed] [Google Scholar]
  127. Jhiang S. M., Fithian L., Smanik P., McGill J., Tong Q., Mazzaferri E. L. Cloning of the human taurine transporter and characterization of taurine uptake in thyroid cells. FEBS Lett. 1993 Mar 1;318(2):139–144. doi: 10.1016/0014-5793(93)80008-i. [DOI] [PubMed] [Google Scholar]
  128. Juel C., Halestrap A. P. Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter. J Physiol. 1999 Jun 15;517(Pt 3):633–642. doi: 10.1111/j.1469-7793.1999.0633s.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Juel C., Honig A., Pilegaard H. Muscle lactate transport studied in sarcolemmal giant vesicles: dependence on fibre type and age. Acta Physiol Scand. 1991 Dec;143(4):361–365. doi: 10.1111/j.1748-1716.1991.tb09246.x. [DOI] [PubMed] [Google Scholar]
  130. Juel C. Intracellular pH recovery and lactate efflux in mouse soleus muscles stimulated in vitro: the involvement of sodium/proton exchange and a lactate carrier. Acta Physiol Scand. 1988 Mar;132(3):363–371. doi: 10.1111/j.1748-1716.1988.tb08340.x. [DOI] [PubMed] [Google Scholar]
  131. Juel C. Lactate-proton cotransport in skeletal muscle. Physiol Rev. 1997 Apr;77(2):321–358. doi: 10.1152/physrev.1997.77.2.321. [DOI] [PubMed] [Google Scholar]
  132. Juel C. Lactate/proton co-transport in skeletal muscle: regulation and importance for pH homeostasis. Acta Physiol Scand. 1996 Mar;156(3):369–374. doi: 10.1046/j.1365-201X.1996.206000.x. [DOI] [PubMed] [Google Scholar]
  133. Juel C. Muscle lactate transport studied in sarcolemmal giant vesicles. Biochim Biophys Acta. 1991 May 31;1065(1):15–20. doi: 10.1016/0005-2736(91)90004-r. [DOI] [PubMed] [Google Scholar]
  134. Juel C. Symmetry and pH dependency of the lactate/proton carrier in skeletal muscle studied with rat sarcolemmal giant vesicles. Biochim Biophys Acta. 1996 Aug 14;1283(1):106–110. doi: 10.1016/0005-2736(96)00084-3. [DOI] [PubMed] [Google Scholar]
  135. Kakuda D. K., Finley K. D., Maruyama M., MacLeod C. L. Stress differentially induces cationic amino acid transporter gene expression. Biochim Biophys Acta. 1998 Nov 11;1414(1-2):75–84. doi: 10.1016/s0005-2736(98)00155-2. [DOI] [PubMed] [Google Scholar]
  136. Kakuda D. K., MacLeod C. L. Na(+)-independent transport (uniport) of amino acids and glucose in mammalian cells. J Exp Biol. 1994 Nov;196:93–108. doi: 10.1242/jeb.196.1.93. [DOI] [PubMed] [Google Scholar]
  137. Kamp F., Hamilton J. A., Kamp F., Westerhoff H. V., Hamilton J. A. Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers. Biochemistry. 1993 Oct 19;32(41):11074–11086. doi: 10.1021/bi00092a017. [DOI] [PubMed] [Google Scholar]
  138. Kamp F., Hamilton J. A. pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11367–11370. doi: 10.1073/pnas.89.23.11367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Kanai Y., Hediger M. A. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature. 1992 Dec 3;360(6403):467–471. doi: 10.1038/360467a0. [DOI] [PubMed] [Google Scholar]
  140. Kanai Y., Segawa H., Miyamoto K. i., Uchino H., Takeda E., Endou H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem. 1998 Sep 11;273(37):23629–23632. doi: 10.1074/jbc.273.37.23629. [DOI] [PubMed] [Google Scholar]
  141. Kanner B. I. Sodium-coupled neurotransmitter transport: structure, function and regulation. J Exp Biol. 1994 Nov;196:237–249. doi: 10.1242/jeb.196.1.237. [DOI] [PubMed] [Google Scholar]
  142. Kavanaugh M. P. Voltage dependence of facilitated arginine flux mediated by the system y+ basic amino acid transporter. Biochemistry. 1993 Jun 8;32(22):5781–5785. doi: 10.1021/bi00073a009. [DOI] [PubMed] [Google Scholar]
  143. Kavanaugh M. P., Wang H., Zhang Z., Zhang W., Wu Y. N., Dechant E., North R. A., Kabat D. Control of cationic amino acid transport and retroviral receptor functions in a membrane protein family. J Biol Chem. 1994 Jun 3;269(22):15445–15450. [PubMed] [Google Scholar]
  144. Kiens B., Kristiansen S., Jensen P., Richter E. A., Turcotte L. P. Membrane associated fatty acid binding protein (FABPpm) in human skeletal muscle is increased by endurance training. Biochem Biophys Res Commun. 1997 Feb 13;231(2):463–465. doi: 10.1006/bbrc.1997.6118. [DOI] [PubMed] [Google Scholar]
  145. Kipnis D. M., Parrish J. E. Role of Na+ and K+ on sugar (2-deoxyglucose) and amino acid (alpha-aminoisobutyric acid) transport in striated muscle. Fed Proc. 1965 Sep-Oct;24(5):1051–1059. [PubMed] [Google Scholar]
  146. Kispal G., Melegh B., Alkonyi I., Sandor A. Enhanced uptake of carnitine by perfused rat liver following starvation. Biochim Biophys Acta. 1987 Jan 9;896(1):96–102. doi: 10.1016/0005-2736(87)90360-9. [DOI] [PubMed] [Google Scholar]
  147. Kleinfeld A. M., Chu P., Storch J. Flip-flop is slow and rate limiting for the movement of long chain anthroyloxy fatty acids across lipid vesicles. Biochemistry. 1997 May 13;36(19):5702–5711. doi: 10.1021/bi962007s. [DOI] [PubMed] [Google Scholar]
  148. Koehler-Stec E. M., Simpson I. A., Vannucci S. J., Landschulz K. T., Landschulz W. H. Monocarboxylate transporter expression in mouse brain. Am J Physiol. 1998 Sep;275(3 Pt 1):E516–E524. doi: 10.1152/ajpendo.1998.275.3.E516. [DOI] [PubMed] [Google Scholar]
  149. Kolter T., Uphues I., Wichelhaus A., Reinauer H., Eckel J. Contraction-induced translocation of the glucose transporter Glut4 in isolated ventricular cardiomyocytes. Biochem Biophys Res Commun. 1992 Dec 15;189(2):1207–1214. doi: 10.1016/0006-291x(92)92333-s. [DOI] [PubMed] [Google Scholar]
  150. Kong X., Manchester J., Salmons S., Lawrence J. C., Jr Glucose transporters in single skeletal muscle fibers. Relationship to hexokinase and regulation by contractile activity. J Biol Chem. 1994 Apr 29;269(17):12963–12967. [PubMed] [Google Scholar]
  151. Koszalka T. R., Andrew C. L., Brent R. L. Effect of insulin on the uptake of creatine-1- 14 C by skeletal muscle in normal and x-irradiated rats. Proc Soc Exp Biol Med. 1972 Apr;139(4):1265–1271. doi: 10.3181/00379727-139-36344. [DOI] [PubMed] [Google Scholar]
  152. Kubo K., Foley J. E. Rate-limiting steps for insulin-mediated glucose uptake into perfused rat hindlimb. Am J Physiol. 1986 Jan;250(1 Pt 1):E100–E102. doi: 10.1152/ajpendo.1986.250.1.E100. [DOI] [PubMed] [Google Scholar]
  153. Kupriyanova T. A., Kandror K. V. Akt-2 binds to Glut4-containing vesicles and phosphorylates their component proteins in response to insulin. J Biol Chem. 1999 Jan 15;274(3):1458–1464. doi: 10.1074/jbc.274.3.1458. [DOI] [PubMed] [Google Scholar]
  154. Kwon H. M. Transcriptional regulation of the betaine/gamma-aminobutyric acid transporter by hypertonicity. Biochem Soc Trans. 1996 Aug;24(3):853–856. doi: 10.1042/bst0240853. [DOI] [PubMed] [Google Scholar]
  155. Lamhonwah A. M., Tein I. Carnitine uptake defect: frameshift mutations in the human plasmalemmal carnitine transporter gene. Biochem Biophys Res Commun. 1998 Nov 18;252(2):396–401. doi: 10.1006/bbrc.1998.9679. [DOI] [PubMed] [Google Scholar]
  156. Le Marchand-Brustel Y., Moutard N., Freychet P. Aminoisobutyric acid transport in soleus muscles of lean and gold thioglucose-obese mice. Am J Physiol. 1982 Jul;243(1):E74–E79. doi: 10.1152/ajpendo.1982.243.1.E74. [DOI] [PubMed] [Google Scholar]
  157. Lehmann-Klose S., Beinbrech B., Cuppoletti J., Gratzl M., Rüegg J. C., Pfitzer G. Ca(2+)- and GTP[gamma S]-induced translocation of the glucose transporter, GLUT-4, to the plasma membrane of permeabilized cardiomyocytes determined using a novel immunoprecipitation method. Pflugers Arch. 1995 Jul;430(3):333–339. doi: 10.1007/BF00373907. [DOI] [PubMed] [Google Scholar]
  158. Link E., McMahon H., Fischer von Mollard G., Yamasaki S., Niemann H., Südhof T. C., Jahn R. Cleavage of cellubrevin by tetanus toxin does not affect fusion of early endosomes. J Biol Chem. 1993 Sep 5;268(25):18423–18426. [PubMed] [Google Scholar]
  159. Liu M. L., Olson A. L., Edgington N. P., Moye-Rowley W. S., Pessin J. E. Myocyte enhancer factor 2 (MEF2) binding site is essential for C2C12 myotube-specific expression of the rat GLUT4/muscle-adipose facilitative glucose transporter gene. J Biol Chem. 1994 Nov 11;269(45):28514–28521. [PubMed] [Google Scholar]
  160. Liu M. L., Olson A. L., Moye-Rowley W. S., Buse J. B., Bell G. I., Pessin J. E. Expression and regulation of the human GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice. J Biol Chem. 1992 Jun 15;267(17):11673–11676. [PubMed] [Google Scholar]
  161. Liu Q. R., López-Corcuera B., Nelson H., Mandiyan S., Nelson N. Cloning and expression of a cDNA encoding the transporter of taurine and beta-alanine in mouse brain. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12145–12149. doi: 10.1073/pnas.89.24.12145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Loike J. D., Zalutsky D. L., Kaback E., Miranda A. F., Silverstein S. C. Extracellular creatine regulates creatine transport in rat and human muscle cells. Proc Natl Acad Sci U S A. 1988 Feb;85(3):807–811. doi: 10.1073/pnas.85.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Low S. Y., Rennie M. J., Taylor P. M. Signaling elements involved in amino acid transport responses to altered muscle cell volume. FASEB J. 1997 Nov;11(13):1111–1117. doi: 10.1096/fasebj.11.13.9367345. [DOI] [PubMed] [Google Scholar]
  164. Low S. Y., Rennie M. J., Taylor P. M. Sodium-dependent glutamate transport in cultured rat myotubes increases after glutamine deprivation. FASEB J. 1994 Jan;8(1):127–131. doi: 10.1096/fasebj.8.1.7905447. [DOI] [PubMed] [Google Scholar]
  165. Low S. Y., Taylor P. M., Rennie M. J. Responses of glutamine transport in cultured rat skeletal muscle to osmotically induced changes in cell volume. J Physiol. 1996 May 1;492(Pt 3):877–885. doi: 10.1113/jphysiol.1996.sp021353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Luiken J. J., Turcotte L. P., Bonen A. Protein-mediated palmitate uptake and expression of fatty acid transport proteins in heart giant vesicles. J Lipid Res. 1999 Jun;40(6):1007–1016. [PubMed] [Google Scholar]
  167. Luiken J. J., van Nieuwenhoven F. A., America G., van der Vusse G. J., Glatz J. F. Uptake and metabolism of palmitate by isolated cardiac myocytes from adult rats: involvement of sarcolemmal proteins. J Lipid Res. 1997 Apr;38(4):745–758. [PubMed] [Google Scholar]
  168. Lumadue J. A., Glick A. B., Ruddle F. H. Cloning, sequence analysis, and expression of the large subunit of the human lymphocyte activation antigen 4F2. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9204–9208. doi: 10.1073/pnas.84.24.9204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. MANCHESTER K. L. OXIDATION OF AMINO ACIDS BY ISOLATED RAT DIAPHRAGM AND THE INFLUENCE OF INSULIN. Biochim Biophys Acta. 1965 Apr 12;100:295–298. doi: 10.1016/0304-4165(65)90457-5. [DOI] [PubMed] [Google Scholar]
  170. MacLeod C. L., Fong A. M., Seal B. S., Walls L., Wilkinson M. F. Isolation of novel complementary DNA clones from T lymphoma cells: one encodes a putative multiple membrane-spanning protein. Cell Growth Differ. 1990 Jun;1(6):271–279. [PubMed] [Google Scholar]
  171. MacLeod C. L. Regulation of cationic amino acid transporter (CAT) gene expression. Biochem Soc Trans. 1996 Aug;24(3):846–852. doi: 10.1042/bst0240846. [DOI] [PubMed] [Google Scholar]
  172. Man M. Z., Hui T. Y., Schaffer J. E., Lodish H. F., Bernlohr D. A. Regulation of the murine adipocyte fatty acid transporter gene by insulin. Mol Endocrinol. 1996 Aug;10(8):1021–1028. doi: 10.1210/mend.10.8.8843418. [DOI] [PubMed] [Google Scholar]
  173. Manchester K. L., Guidotti G. G., Borghetti A. F., Lüneburg B. Evaluation of kinetic parameters for uptake of amino acids by cells: effect of insulin on the accumulation of aminoisobutyrate and cycloleucine by isolated rat diaphragm muscle and chick embryo hearts. Biochim Biophys Acta. 1971 Jul 6;241(1):226–241. doi: 10.1016/0005-2736(71)90319-1. [DOI] [PubMed] [Google Scholar]
  174. Manolopoulos V. G., Droogmans G., Nilius B. Hypotonicity and thrombin activate taurine efflux in BC3H1 and C2C12 myoblasts that is down regulated during differentiation. Biochem Biophys Res Commun. 1997 Mar 6;232(1):74–79. doi: 10.1006/bbrc.1997.6222. [DOI] [PubMed] [Google Scholar]
  175. Marette A., Burdett E., Douen A., Vranic M., Klip A. Insulin induces the translocation of GLUT4 from a unique intracellular organelle to transverse tubules in rat skeletal muscle. Diabetes. 1992 Dec;41(12):1562–1569. doi: 10.2337/diab.41.12.1562. [DOI] [PubMed] [Google Scholar]
  176. Marette A., Richardson J. M., Ramlal T., Balon T. W., Vranic M., Pessin J. E., Klip A. Abundance, localization, and insulin-induced translocation of glucose transporters in red and white muscle. Am J Physiol. 1992 Aug;263(2 Pt 1):C443–C452. doi: 10.1152/ajpcell.1992.263.2.C443. [DOI] [PubMed] [Google Scholar]
  177. Maroni B. J., Karapanos G., Mitch W. E. System ASC and sodium-independent neutral amino acid transport in muscle of uremic rats. Am J Physiol. 1986 Jul;251(1 Pt 2):F81–F86. doi: 10.1152/ajprenal.1986.251.1.F81. [DOI] [PubMed] [Google Scholar]
  178. Marshall B. A., Ren J. M., Johnson D. W., Gibbs E. M., Lillquist J. S., Soeller W. C., Holloszy J. O., Mueckler M. Germline manipulation of glucose homeostasis via alteration of glucose transporter levels in skeletal muscle. J Biol Chem. 1993 Sep 5;268(25):18442–18445. [PubMed] [Google Scholar]
  179. Marti L., Morin N., Enrique-Tarancon G., Prevot D., Lafontan M., Testar X., Zorzano A., Carpéné C. Tyramine and vanadate synergistically stimulate glucose transport in rat adipocytes by amine oxidase-dependent generation of hydrogen peroxide. J Pharmacol Exp Ther. 1998 Apr;285(1):342–349. [PubMed] [Google Scholar]
  180. Martin S., Tellam J., Livingstone C., Slot J. W., Gould G. W., James D. E. The glucose transporter (GLUT-4) and vesicle-associated membrane protein-2 (VAMP-2) are segregated from recycling endosomes in insulin-sensitive cells. J Cell Biol. 1996 Aug;134(3):625–635. doi: 10.1083/jcb.134.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Martinuzzi A., Vergani L., Rosa M., Angelini C. L-carnitine uptake in differentiating human cultured muscle. Biochim Biophys Acta. 1991 Nov 12;1095(3):217–222. doi: 10.1016/0167-4889(91)90102-4. [DOI] [PubMed] [Google Scholar]
  182. Mastroberardino L., Spindler B., Pfeiffer R., Skelly P. J., Loffing J., Shoemaker C. B., Verrey F. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature. 1998 Sep 17;395(6699):288–291. doi: 10.1038/26246. [DOI] [PubMed] [Google Scholar]
  183. Mayser W., Schloss P., Betz H. Primary structure and functional expression of a choline transporter expressed in the rat nervous system. FEBS Lett. 1992 Jun 22;305(1):31–36. doi: 10.1016/0014-5793(92)80649-2. [DOI] [PubMed] [Google Scholar]
  184. McCullagh K. J., Bonen A. Reduced lactate transport in denervated rat skeletal muscle. Am J Physiol. 1995 Apr;268(4 Pt 2):R884–R888. doi: 10.1152/ajpregu.1995.268.4.R884. [DOI] [PubMed] [Google Scholar]
  185. McCullagh K. J., Poole R. C., Halestrap A. P., O'Brien M., Bonen A. Role of the lactate transporter (MCT1) in skeletal muscles. Am J Physiol. 1996 Jul;271(1 Pt 1):E143–E150. doi: 10.1152/ajpendo.1996.271.1.E143. [DOI] [PubMed] [Google Scholar]
  186. McCullagh K. J., Poole R. C., Halestrap A. P., O'Brien M., Bonen A. Role of the lactate transporter (MCT1) in skeletal muscles. Am J Physiol. 1996 Jul;271(1 Pt 1):E143–E150. doi: 10.1152/ajpendo.1996.271.1.E143. [DOI] [PubMed] [Google Scholar]
  187. McDermott J. C., Bonen A. Lactate transport in rat sarcolemmal vesicles and intact skeletal muscle, and after muscle contraction. Acta Physiol Scand. 1994 May;151(1):17–28. doi: 10.1111/j.1748-1716.1994.tb09717.x. [DOI] [PubMed] [Google Scholar]
  188. McNaughton L. R., Dalton B., Tarr J. The effects of creatine supplementation on high-intensity exercise performance in elite performers. Eur J Appl Physiol Occup Physiol. 1998 Aug;78(3):236–240. doi: 10.1007/s004210050413. [DOI] [PubMed] [Google Scholar]
  189. Memon R. A., Feingold K. R., Moser A. H., Fuller J., Grunfeld C. Regulation of fatty acid transport protein and fatty acid translocase mRNA levels by endotoxin and cytokines. Am J Physiol. 1998 Feb;274(2 Pt 1):E210–E217. doi: 10.1152/ajpendo.1998.274.2.E210. [DOI] [PubMed] [Google Scholar]
  190. Mora S., Monden I., Zorzano A., Keller K. Heterologous expression of rab4 reduces glucose transport and GLUT4 abundance at the cell surface in oocytes. Biochem J. 1997 Jun 1;324(Pt 2):455–459. doi: 10.1042/bj3240455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Morris N. J., Ducret A., Aebersold R., Ross S. A., Keller S. R., Lienhard G. E. Membrane amine oxidase cloning and identification as a major protein in the adipocyte plasma membrane. J Biol Chem. 1997 Apr 4;272(14):9388–9392. doi: 10.1074/jbc.272.14.9388. [DOI] [PubMed] [Google Scholar]
  192. Mujika I., Chatard J. C., Lacoste L., Barale F., Geyssant A. Creatine supplementation does not improve sprint performance in competitive swimmers. Med Sci Sports Exerc. 1996 Nov;28(11):1435–1441. doi: 10.1097/00005768-199611000-00014. [DOI] [PubMed] [Google Scholar]
  193. Muñoz P., Chillarón J., Camps M., Castelló A., Furriols M., Testar X., Palacín M., Zorzano A. Evidence for posttranscriptional regulation of GLUT4 expression in muscle and adipose tissue from streptozotocin-induced diabetic and benfluorex-treated rats. Biochem Pharmacol. 1996 Dec 13;52(11):1665–1673. doi: 10.1016/s0006-2952(96)00506-0. [DOI] [PubMed] [Google Scholar]
  194. Muñoz P., Gumà A., Camps M., Furriols M., Testar X., Palacín M., Zorzano A. Vanadate stimulates system A amino acid transport activity in skeletal muscle. Evidence for the involvement of intracellular pH as a mediator of vanadate action. J Biol Chem. 1992 May 25;267(15):10381–10388. [PubMed] [Google Scholar]
  195. Muñoz P., Mora S., Sevilla L., Kaliman P., Tomàs E., Gumà A., Testar X., Palacín M., Zorzano A. Expression and insulin-regulated distribution of caveolin in skeletal muscle. Caveolin does not colocalize with GLUT4 in intracellular membranes. J Biol Chem. 1996 Apr 5;271(14):8133–8139. doi: 10.1074/jbc.271.14.8133. [DOI] [PubMed] [Google Scholar]
  196. Muñoz P., Rosemblatt M., Testar X., Palacín M., Thoidis G., Pilch P. F., Zorzano A. The T-tubule is a cell-surface target for insulin-regulated recycling of membrane proteins in skeletal muscle. Biochem J. 1995 Dec 1;312(Pt 2):393–400. doi: 10.1042/bj3120393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Muñoz P., Rosemblatt M., Testar X., Palacín M., Zorzano A. Isolation and characterization of distinct domains of sarcolemma and T-tubules from rat skeletal muscle. Biochem J. 1995 Apr 1;307(Pt 1):273–280. doi: 10.1042/bj3070273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Narahara H. T., Holloszy J. O. The actions of insulin, trypsin, and electrical stimulation on amino acid transport in muscle. J Biol Chem. 1974 Sep 10;249(17):5435–5443. [PubMed] [Google Scholar]
  199. Nash S. R., Giros B., Kingsmore S. F., Rochelle J. M., Suter S. T., Gregor P., Seldin M. F., Caron M. G. Cloning, pharmacological characterization, and genomic localization of the human creatine transporter. Receptors Channels. 1994;2(2):165–174. [PubMed] [Google Scholar]
  200. Nezu J., Tamai I., Oku A., Ohashi R., Yabuuchi H., Hashimoto N., Nikaido H., Sai Y., Koizumi A., Shoji Y. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet. 1999 Jan;21(1):91–94. doi: 10.1038/5030. [DOI] [PubMed] [Google Scholar]
  201. Noy N., Zakim D. Fatty acids bound to unilamellar lipid vesicles as substrates for microsomal acyl-CoA ligase. Biochemistry. 1985 Jul 2;24(14):3521–3525. doi: 10.1021/bi00335a020. [DOI] [PubMed] [Google Scholar]
  202. Odoom J. E., Kemp G. J., Radda G. K. The regulation of total creatine content in a myoblast cell line. Mol Cell Biochem. 1996 May 24;158(2):179–188. doi: 10.1007/BF00225844. [DOI] [PubMed] [Google Scholar]
  203. Ohashi R., Tamai I., Yabuuchi H., Nezu J. I., Oku A., Sai Y., Shimane M., Tsuji A. Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther. 1999 Nov;291(2):778–784. [PubMed] [Google Scholar]
  204. Olichon-Berthe C., Gautier N., Van Obberghen E., Le Marchand-Brustel Y. Expression of the glucose transporter GLUT4 in the muscular dystrophic mdx mouse. Biochem J. 1993 Apr 1;291(Pt 1):257–261. doi: 10.1042/bj2910257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Olivares L., Aragón C., Giménez C., Zafra F. Analysis of the transmembrane topology of the glycine transporter GLYT1. J Biol Chem. 1997 Jan 10;272(2):1211–1217. doi: 10.1074/jbc.272.2.1211. [DOI] [PubMed] [Google Scholar]
  206. Olson A. L., Knight J. B., Pessin J. E. Syntaxin 4, VAMP2, and/or VAMP3/cellubrevin are functional target membrane and vesicle SNAP receptors for insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol. 1997 May;17(5):2425–2435. doi: 10.1128/mcb.17.5.2425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Olson A. L., Pessin J. E. Transcriptional regulation of the human GLUT4 gene promoter in diabetic transgenic mice. J Biol Chem. 1995 Oct 6;270(40):23491–23495. doi: 10.1074/jbc.270.40.23491. [DOI] [PubMed] [Google Scholar]
  208. Pagliassotti M. J., Donovan C. M. Role of cell type in net lactate removal by skeletal muscle. Am J Physiol. 1990 Apr;258(4 Pt 1):E635–E642. doi: 10.1152/ajpendo.1990.258.4.E635. [DOI] [PubMed] [Google Scholar]
  209. Palacín M., Estévez R., Bertran J., Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev. 1998 Oct;78(4):969–1054. doi: 10.1152/physrev.1998.78.4.969. [DOI] [PubMed] [Google Scholar]
  210. Pelsers M. M., Lutgerink J. T., Nieuwenhoven F. A., Tandon N. N., van der Vusse G. J., Arends J. W., Hoogenboom H. R., Glatz J. F. A sensitive immunoassay for rat fatty acid translocase (CD36) using phage antibodies selected on cell transfectants: abundant presence of fatty acid translocase/CD36 in cardiac and red skeletal muscle and up-regulation in diabetes. Biochem J. 1999 Feb 1;337(Pt 3):407–414. [PMC free article] [PubMed] [Google Scholar]
  211. Pfeiffer R., Loffing J., Rossier G., Bauch C., Meier C., Eggermann T., Loffing-Cueni D., Kühn L. C., Verrey F. Luminal heterodimeric amino acid transporter defective in cystinuria. Mol Biol Cell. 1999 Dec;10(12):4135–4147. doi: 10.1091/mbc.10.12.4135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Pfeiffer R., Rossier G., Spindler B., Meier C., Kühn L., Verrey F. Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J. 1999 Jan 4;18(1):49–57. doi: 10.1093/emboj/18.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Pilegaard H., Bangsbo J., Richter E. A., Juel C. Lactate transport studied in sarcolemmal giant vesicles from human muscle biopsies: relation to training status. J Appl Physiol (1985) 1994 Oct;77(4):1858–1862. doi: 10.1152/jappl.1994.77.4.1858. [DOI] [PubMed] [Google Scholar]
  214. Pilegaard H., Juel C. Lactate transport studied in sarcolemmal giant vesicles from rat skeletal muscles: effect of denervation. Am J Physiol. 1995 Oct;269(4 Pt 1):E679–E682. doi: 10.1152/ajpendo.1995.269.4.E679. [DOI] [PubMed] [Google Scholar]
  215. Pilegaard H., Juel C., Wibrand F. Lactate transport studied in sarcolemmal giant vesicles from rats: effect of training. Am J Physiol. 1993 Feb;264(2 Pt 1):E156–E160. doi: 10.1152/ajpendo.1993.264.2.E156. [DOI] [PubMed] [Google Scholar]
  216. Pilegaard H., Terzis G., Halestrap A., Juel C. Distribution of the lactate/H+ transporter isoforms MCT1 and MCT4 in human skeletal muscle. Am J Physiol. 1999 May;276(5 Pt 1):E843–E848. doi: 10.1152/ajpendo.1999.276.5.E843. [DOI] [PubMed] [Google Scholar]
  217. Pineda M., Fernández E., Torrents D., Estévez R., López C., Camps M., Lloberas J., Zorzano A., Palacín M. Identification of a membrane protein, LAT-2, that Co-expresses with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids. J Biol Chem. 1999 Jul 9;274(28):19738–19744. doi: 10.1074/jbc.274.28.19738. [DOI] [PubMed] [Google Scholar]
  218. Ploug T., Galbo H., Vinten J., Jørgensen M., Richter E. A. Kinetics of glucose transport in rat muscle: effects of insulin and contractions. Am J Physiol. 1987 Jul;253(1 Pt 1):E12–E20. doi: 10.1152/ajpendo.1987.253.1.E12. [DOI] [PubMed] [Google Scholar]
  219. Ploug T., Stallknecht B. M., Pedersen O., Kahn B. B., Ohkuwa T., Vinten J., Galbo H. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Am J Physiol. 1990 Dec;259(6 Pt 1):E778–E786. doi: 10.1152/ajpendo.1990.259.6.E778. [DOI] [PubMed] [Google Scholar]
  220. Ploug T., van Deurs B., Ai H., Cushman S. W., Ralston E. Analysis of GLUT4 distribution in whole skeletal muscle fibers: identification of distinct storage compartments that are recruited by insulin and muscle contractions. J Cell Biol. 1998 Sep 21;142(6):1429–1446. doi: 10.1083/jcb.142.6.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Poole R. C., Sansom C. E., Halestrap A. P. Studies of the membrane topology of the rat erythrocyte H+/lactate cotransporter (MCT1). Biochem J. 1996 Dec 15;320(Pt 3):817–824. doi: 10.1042/bj3200817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Pozefsky T., Felig P., Tobin J. D., Soeldner J. S., Cahill G. F., Jr Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels. J Clin Invest. 1969 Dec;48(12):2273–2282. doi: 10.1172/JCI106193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Prevost M. C., Nelson A. G., Morris G. S. Creatine supplementation enhances intermittent work performance. Res Q Exerc Sport. 1997 Sep;68(3):233–240. doi: 10.1080/02701367.1997.10608002. [DOI] [PubMed] [Google Scholar]
  224. Price N. T., Jackson V. N., Halestrap A. P. Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem J. 1998 Jan 15;329(Pt 2):321–328. doi: 10.1042/bj3290321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Quackenbush E., Clabby M., Gottesdiener K. M., Barbosa J., Jones N. H., Strominger J. L., Speck S., Leiden J. M. Molecular cloning of complementary DNAs encoding the heavy chain of the human 4F2 cell-surface antigen: a type II membrane glycoprotein involved in normal and neoplastic cell growth. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6526–6530. doi: 10.1073/pnas.84.18.6526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Ramamoorthy S., Leibach F. H., Mahesh V. B., Han H., Yang-Feng T., Blakely R. D., Ganapathy V. Functional characterization and chromosomal localization of a cloned taurine transporter from human placenta. Biochem J. 1994 Jun 15;300(Pt 3):893–900. doi: 10.1042/bj3000893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Rasmussen J. T., Berglund L., Rasmussen M. S., Petersen T. E. Assignment of disulfide bridges in bovine CD36. Eur J Biochem. 1998 Oct 15;257(2):488–494. doi: 10.1046/j.1432-1327.1998.2570488.x. [DOI] [PubMed] [Google Scholar]
  228. Rasola A., Galietta L. J., Barone V., Romeo G., Bagnasco S. Molecular cloning and functional characterization of a GABA/betaine transporter from human kidney. FEBS Lett. 1995 Oct 16;373(3):229–233. doi: 10.1016/0014-5793(95)01052-g. [DOI] [PubMed] [Google Scholar]
  229. Rebouche C. J. Carnitine movement across muscle cell membranes. Studies in isolated rat muscle. Biochim Biophys Acta. 1977 Nov 15;471(1):145–155. doi: 10.1016/0005-2736(77)90402-3. [DOI] [PubMed] [Google Scholar]
  230. Rebouche C. J., Engel A. G. Carnitine transport in cultured muscle cells and skin fibroblasts from patients with primary systemic carnitine deficiency. In Vitro. 1982 May;18(5):495–500. doi: 10.1007/BF02796479. [DOI] [PubMed] [Google Scholar]
  231. Ren J. M., Marshall B. A., Gulve E. A., Gao J., Johnson D. W., Holloszy J. O., Mueckler M. Evidence from transgenic mice that glucose transport is rate-limiting for glycogen deposition and glycolysis in skeletal muscle. J Biol Chem. 1993 Aug 5;268(22):16113–16115. [PubMed] [Google Scholar]
  232. Ren J. M., Semenkovich C. F., Gulve E. A., Gao J., Holloszy J. O. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J Biol Chem. 1994 May 20;269(20):14396–14401. [PubMed] [Google Scholar]
  233. Rett K., Wicklmayr M., Dietze G. J., Häring H. U. Insulin-induced glucose transporter (GLUT1 and GLUT4) translocation in cardiac muscle tissue is mimicked by bradykinin. Diabetes. 1996 Jan;45 (Suppl 1):S66–S69. doi: 10.2337/diab.45.1.s66. [DOI] [PubMed] [Google Scholar]
  234. Richardson J. M., Pessin J. E. Identification of a skeletal muscle-specific regulatory domain in the rat GLUT4/muscle-fat gene. J Biol Chem. 1993 Oct 5;268(28):21021–21027. [PubMed] [Google Scholar]
  235. Riggs T. R., McKirahan K. J. Action of insulin on transport of L-alanine into rat diaphragm in vitro. Evidence that the hormone affects only one neutral amino acid transport system. J Biol Chem. 1973 Sep 25;248(18):6450–6455. [PubMed] [Google Scholar]
  236. Rossier G., Meier C., Bauch C., Summa V., Sordat B., Verrey F., Kühn L. C. LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem. 1999 Dec 3;274(49):34948–34954. doi: 10.1074/jbc.274.49.34948. [DOI] [PubMed] [Google Scholar]
  237. Ruderman N. B., Berger M. The formation of glutamine and alanine in skeletal muscle. J Biol Chem. 1974 Sep 10;249(17):5500–5506. [PubMed] [Google Scholar]
  238. Sandoval N., Bauer D., Brenner V., Coy J. F., Drescher B., Kioschis P., Korn B., Nyakatura G., Poustka A., Reichwald K. The genomic organization of a human creatine transporter (CRTR) gene located in Xq28. Genomics. 1996 Jul 15;35(2):383–385. doi: 10.1006/geno.1996.0373. [DOI] [PubMed] [Google Scholar]
  239. Santalucía T., Camps M., Castelló A., Muñoz P., Nuel A., Testar X., Palacin M., Zorzano A. Developmental regulation of GLUT-1 (erythroid/Hep G2) and GLUT-4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue. Endocrinology. 1992 Feb;130(2):837–846. doi: 10.1210/endo.130.2.1370797. [DOI] [PubMed] [Google Scholar]
  240. Sato H., Tamba M., Ishii T., Bannai S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 1999 Apr 23;274(17):11455–11458. doi: 10.1074/jbc.274.17.11455. [DOI] [PubMed] [Google Scholar]
  241. Schaap F. G., Hamers L., Van der Vusse G. J., Glatz J. F. Molecular cloning of fatty acid-transport protein cDNA from rat. Biochim Biophys Acta. 1997 Oct 9;1354(1):29–34. doi: 10.1016/s0167-4781(97)00121-8. [DOI] [PubMed] [Google Scholar]
  242. Schaffer J. E., Lodish H. F. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell. 1994 Nov 4;79(3):427–436. doi: 10.1016/0092-8674(94)90252-6. [DOI] [PubMed] [Google Scholar]
  243. Schömig E., Spitzenberger F., Engelhardt M., Martel F., Ording N., Gründemann D. Molecular cloning and characterization of two novel transport proteins from rat kidney. FEBS Lett. 1998 Mar 20;425(1):79–86. doi: 10.1016/s0014-5793(98)00203-8. [DOI] [PubMed] [Google Scholar]
  244. Segawa H., Fukasawa Y., Miyamoto K., Takeda E., Endou H., Kanai Y. Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem. 1999 Jul 9;274(28):19745–19751. doi: 10.1074/jbc.274.28.19745. [DOI] [PubMed] [Google Scholar]
  245. Sekine T., Kusuhara H., Utsunomiya-Tate N., Tsuda M., Sugiyama Y., Kanai Y., Endou H. Molecular cloning and characterization of high-affinity carnitine transporter from rat intestine. Biochem Biophys Res Commun. 1998 Oct 20;251(2):586–591. doi: 10.1006/bbrc.1998.9521. [DOI] [PubMed] [Google Scholar]
  246. Seppet E. K., Adoyaan A. J., Kallikorm A. P., Chernousova G. B., Lyulina N. V., Sharov V. G., Severin V. V., Popovich M. I., Saks V. A. Hormone regulation of cardiac energy metabolism. I. Creatine transport across cell membranes of euthyroid and hyperthyroid rat heart. Biochem Med. 1985 Dec;34(3):267–279. doi: 10.1016/0006-2944(85)90088-2. [DOI] [PubMed] [Google Scholar]
  247. Sevilla L., Tomàs E., Muñoz P., Gumá A., Fischer Y., Thomas J., Ruiz-Montasell B., Testar X., Palacín M., Blasi J. Characterization of two distinct intracellular GLUT4 membrane populations in muscle fiber. Differential protein composition and sensitivity to insulin. Endocrinology. 1997 Jul;138(7):3006–3015. doi: 10.1210/endo.138.7.5235. [DOI] [PubMed] [Google Scholar]
  248. Shafqat S., Tamarappoo B. K., Kilberg M. S., Puranam R. S., McNamara J. O., Guadaño-Ferraz A., Fremeau R. T., Jr Cloning and expression of a novel Na(+)-dependent neutral amino acid transporter structurally related to mammalian Na+/glutamate cotransporters. J Biol Chem. 1993 Jul 25;268(21):15351–15355. [PubMed] [Google Scholar]
  249. Shepherd P. R., Gibbs E. M., Wesslau C., Gould G. W., Kahn B. B. Human small intestine facilitative fructose/glucose transporter (GLUT5) is also present in insulin-responsive tissues and brain. Investigation of biochemical characteristics and translocation. Diabetes. 1992 Oct;41(10):1360–1365. doi: 10.2337/diab.41.10.1360. [DOI] [PubMed] [Google Scholar]
  250. Sherman L. A., Hirshman M. F., Cormont M., Le Marchand-Brustel Y., Goodyear L. J. Differential effects of insulin and exercise on Rab4 distribution in rat skeletal muscle. Endocrinology. 1996 Jan;137(1):266–273. doi: 10.1210/endo.137.1.8536622. [DOI] [PubMed] [Google Scholar]
  251. Shibata H., Omata W., Suzuki Y., Tanaka S., Kojima I. A synthetic peptide corresponding to the Rab4 hypervariable carboxyl-terminal domain inhibits insulin action on glucose transport in rat adipocytes. J Biol Chem. 1996 Apr 19;271(16):9704–9709. doi: 10.1074/jbc.271.16.9704. [DOI] [PubMed] [Google Scholar]
  252. Slot J. W., Geuze H. J., Gigengack S., James D. E., Lienhard G. E. Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7815–7819. doi: 10.1073/pnas.88.17.7815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. Smith K. E., Borden L. A., Wang C. H., Hartig P. R., Branchek T. A., Weinshank R. L. Cloning and expression of a high affinity taurine transporter from rat brain. Mol Pharmacol. 1992 Oct;42(4):563–569. [PubMed] [Google Scholar]
  254. Smith S. A., Montain S. J., Matott R. P., Zientara G. P., Jolesz F. A., Fielding R. A. Creatine supplementation and age influence muscle metabolism during exercise. J Appl Physiol (1985) 1998 Oct;85(4):1349–1356. doi: 10.1152/jappl.1998.85.4.1349. [DOI] [PubMed] [Google Scholar]
  255. Snell K. Muscle alanine synthesis and hepatic gluconeogenesis. Biochem Soc Trans. 1980 Apr;8(2):205–213. doi: 10.1042/bst0080205. [DOI] [PubMed] [Google Scholar]
  256. Snow R. J., McKenna M. J., Selig S. E., Kemp J., Stathis C. G., Zhao S. Effect of creatine supplementation on sprint exercise performance and muscle metabolism. J Appl Physiol (1985) 1998 May;84(5):1667–1673. doi: 10.1152/jappl.1998.84.5.1667. [DOI] [PubMed] [Google Scholar]
  257. Sonders M. S., Amara S. G. Channels in transporters. Curr Opin Neurobiol. 1996 Jun;6(3):294–302. doi: 10.1016/s0959-4388(96)80111-5. [DOI] [PubMed] [Google Scholar]
  258. Sora I., Richman J., Santoro G., Wei H., Wang Y., Vanderah T., Horvath R., Nguyen M., Waite S., Roeske W. R. The cloning and expression of a human creatine transporter. Biochem Biophys Res Commun. 1994 Oct 14;204(1):419–427. doi: 10.1006/bbrc.1994.2475. [DOI] [PubMed] [Google Scholar]
  259. Sorrentino D., Stump D., Potter B. J., Robinson R. B., White R., Kiang C. L., Berk P. D. Oleate uptake by cardiac myocytes is carrier mediated and involves a 40-kD plasma membrane fatty acid binding protein similar to that in liver, adipose tissue, and gut. J Clin Invest. 1988 Sep;82(3):928–935. doi: 10.1172/JCI113700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Stieger B., O'Neill B., Krähenbühl S. Characterization of L-carnitine transport by rat kidney brush-border-membrane vesicles. Biochem J. 1995 Jul 15;309(Pt 2):643–647. doi: 10.1042/bj3090643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Stuhlsatz-Krouper S. M., Bennett N. E., Schaffer J. E. Substitution of alanine for serine 250 in the murine fatty acid transport protein inhibits long chain fatty acid transport. J Biol Chem. 1998 Oct 30;273(44):28642–28650. doi: 10.1074/jbc.273.44.28642. [DOI] [PubMed] [Google Scholar]
  262. Stump D. D., Zhou S. L., Berk P. D. Comparison of plasma membrane FABP and mitochondrial isoform of aspartate aminotransferase from rat liver. Am J Physiol. 1993 Nov;265(5 Pt 1):G894–G902. doi: 10.1152/ajpgi.1993.265.5.G894. [DOI] [PubMed] [Google Scholar]
  263. Sumitani S., Ramlal T., Liu Z., Klip A. Expression of syntaxin 4 in rat skeletal muscle and rat skeletal muscle cells in culture. Biochem Biophys Res Commun. 1995 Aug 15;213(2):462–468. doi: 10.1006/bbrc.1995.2154. [DOI] [PubMed] [Google Scholar]
  264. Sun D., Nguyen N., DeGrado T. R., Schwaiger M., Brosius F. C., 3rd Ischemia induces translocation of the insulin-responsive glucose transporter GLUT4 to the plasma membrane of cardiac myocytes. Circulation. 1994 Feb;89(2):793–798. doi: 10.1161/01.cir.89.2.793. [DOI] [PubMed] [Google Scholar]
  265. Tadros L. B., Taylor P. M., Rennie M. J. Characteristics of glutamine transport in primary tissue culture of rat skeletal muscle. Am J Physiol. 1993 Jul;265(1 Pt 1):E135–E144. doi: 10.1152/ajpendo.1993.265.1.E135. [DOI] [PubMed] [Google Scholar]
  266. Tadros L. B., Willhoft N. M., Taylor P. M., Rennie M. J. Effects of glutamine deprivation on glutamine transport and synthesis in primary culture of rat skeletal muscle. Am J Physiol. 1993 Dec;265(6 Pt 1):E935–E942. doi: 10.1152/ajpendo.1993.265.6.E935. [DOI] [PubMed] [Google Scholar]
  267. Takanaga H., Tamai I., Inaba S., Sai Y., Higashida H., Yamamoto H., Tsuji A. cDNA cloning and functional characterization of rat intestinal monocarboxylate transporter. Biochem Biophys Res Commun. 1995 Dec 5;217(1):370–377. doi: 10.1006/bbrc.1995.2786. [DOI] [PubMed] [Google Scholar]
  268. Tamai I., Ohashi R., Nezu J., Yabuuchi H., Oku A., Shimane M., Sai Y., Tsuji A. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem. 1998 Aug 7;273(32):20378–20382. doi: 10.1074/jbc.273.32.20378. [DOI] [PubMed] [Google Scholar]
  269. Tamori Y., Hashiramoto M., Araki S., Kamata Y., Takahashi M., Kozaki S., Kasuga M. Cleavage of vesicle-associated membrane protein (VAMP)-2 and cellubrevin on GLUT4-containing vesicles inhibits the translocation of GLUT4 in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 1996 Mar 27;220(3):740–745. doi: 10.1006/bbrc.1996.0474. [DOI] [PubMed] [Google Scholar]
  270. Tang N. L., Ganapathy V., Wu X., Hui J., Seth P., Yuen P. M., Wanders R. J., Fok T. F., Hjelm N. M. Mutations of OCTN2, an organic cation/carnitine transporter, lead to deficient cellular carnitine uptake in primary carnitine deficiency. Hum Mol Genet. 1999 Apr;8(4):655–660. doi: 10.1093/hmg/8.4.655. [DOI] [PubMed] [Google Scholar]
  271. Tein I., De Vivo D. C., Bierman F., Pulver P., De Meirleir L. J., Cvitanovic-Sojat L., Pagon R. A., Bertini E., Dionisi-Vici C., Servidei S. Impaired skin fibroblast carnitine uptake in primary systemic carnitine deficiency manifested by childhood carnitine-responsive cardiomyopathy. Pediatr Res. 1990 Sep;28(3):247–255. doi: 10.1203/00006450-199009000-00020. [DOI] [PubMed] [Google Scholar]
  272. Teixeira S., Di Grandi S., Kühn L. C. Primary structure of the human 4F2 antigen heavy chain predicts a transmembrane protein with a cytoplasmic NH2 terminus. J Biol Chem. 1987 Jul 15;262(20):9574–9580. [PubMed] [Google Scholar]
  273. Timmers K. I., Clark A. E., Omatsu-Kanbe M., Whiteheart S. W., Bennett M. K., Holman G. D., Cushman S. W. Identification of SNAP receptors in rat adipose cell membrane fractions and in SNARE complexes co-immunoprecipitated with epitope-tagged N-ethylmaleimide-sensitive fusion protein. Biochem J. 1996 Dec 1;320(Pt 2):429–436. doi: 10.1042/bj3200429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  274. Torrance C. J., Usala S. J., Pessin J. E., Dohm G. L. Characterization of a low affinity thyroid hormone receptor binding site within the rat GLUT4 gene promoter. Endocrinology. 1997 Mar;138(3):1215–1223. doi: 10.1210/endo.138.3.4982. [DOI] [PubMed] [Google Scholar]
  275. Torrents D., Estévez R., Pineda M., Fernández E., Lloberas J., Shi Y. B., Zorzano A., Palacín M. Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L. A candidate gene for lysinuric protein intolerance. J Biol Chem. 1998 Dec 4;273(49):32437–32445. doi: 10.1074/jbc.273.49.32437. [DOI] [PubMed] [Google Scholar]
  276. Torrents D., Mykkänen J., Pineda M., Feliubadaló L., Estévez R., de Cid R., Sanjurjo P., Zorzano A., Nunes V., Huoponen K. Identification of SLC7A7, encoding y+LAT-1, as the lysinuric protein intolerance gene. Nat Genet. 1999 Mar;21(3):293–296. doi: 10.1038/6809. [DOI] [PubMed] [Google Scholar]
  277. Treem W. R., Stanley C. A., Finegold D. N., Hale D. E., Coates P. M. Primary carnitine deficiency due to a failure of carnitine transport in kidney, muscle, and fibroblasts. N Engl J Med. 1988 Nov 17;319(20):1331–1336. doi: 10.1056/NEJM198811173192006. [DOI] [PubMed] [Google Scholar]
  278. Uchida S., Kwon H. M., Yamauchi A., Preston A. S., Marumo F., Handler J. S. Molecular cloning of the cDNA for an MDCK cell Na(+)- and Cl(-)-dependent taurine transporter that is regulated by hypertonicity. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8230–8234. doi: 10.1073/pnas.89.17.8230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  279. Uphues I., Kolter T., Goud B., Eckel J. Insulin-induced translocation of the glucose transporter GLUT4 in cardiac muscle: studies on the role of small-molecular-mass GTP-binding proteins. Biochem J. 1994 Jul 1;301(Pt 1):177–182. doi: 10.1042/bj3010177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  280. Utsunomiya-Tate N., Endou H., Kanai Y. Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J Biol Chem. 1996 Jun 21;271(25):14883–14890. doi: 10.1074/jbc.271.25.14883. [DOI] [PubMed] [Google Scholar]
  281. Van Der Sluijs P., Hull M., Zahraoui A., Tavitian A., Goud B., Mellman I. The small GTP-binding protein rab4 is associated with early endosomes. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6313–6317. doi: 10.1073/pnas.88.14.6313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  282. Van Nieuwenhoven F. A., Luiken J. J., De Jong Y. F., Grimaldi P. A., Van der Vusse G. J., Glatz J. F. Stable transfection of fatty acid translocase (CD36) in a rat heart muscle cell line (H9c2). J Lipid Res. 1998 Oct;39(10):2039–2047. [PubMed] [Google Scholar]
  283. Van Nieuwenhoven F. A., Verstijnen C. P., Abumrad N. A., Willemsen P. H., Van Eys G. J., Van der Vusse G. J., Glatz J. F. Putative membrane fatty acid translocase and cytoplasmic fatty acid-binding protein are co-expressed in rat heart and skeletal muscles. Biochem Biophys Res Commun. 1995 Feb 15;207(2):747–752. doi: 10.1006/bbrc.1995.1250. [DOI] [PubMed] [Google Scholar]
  284. Van Nieuwenhoven F. A., Willemsen P. H., Van der Vusse G. J., Glatz J. F. Co-expression in rat heart and skeletal muscle of four genes coding for proteins implicated in long-chain fatty acid uptake. Int J Biochem Cell Biol. 1999 Mar-Apr;31(3-4):489–498. doi: 10.1016/s1357-2725(98)00122-8. [DOI] [PubMed] [Google Scholar]
  285. Vaz F. M., Scholte H. R., Ruiter J., Hussaarts-Odijk L. M., Pereira R. R., Schweitzer S., de Klerk J. B., Waterham H. R., Wanders R. J. Identification of two novel mutations in OCTN2 of three patients with systemic carnitine deficiency. Hum Genet. 1999 Jul-Aug;105(1-2):157–161. doi: 10.1007/s004399900105. [DOI] [PubMed] [Google Scholar]
  286. Vergani L., Angelini C. Infantile lipid storage myopathy with nocturnal hypoventilation shows abnormal low-affinity muscle carnitine uptake in vitro. Neuromuscul Disord. 1999 Jul;9(5):320–322. doi: 10.1016/s0960-8966(98)00131-x. [DOI] [PubMed] [Google Scholar]
  287. Wang C., Hu S. M. Developmental regulation in the expression of rat heart glucose transporters. Biochem Biophys Res Commun. 1991 Jun 28;177(3):1095–1100. doi: 10.1016/0006-291x(91)90651-m. [DOI] [PubMed] [Google Scholar]
  288. Wang G., Witkin J. W., Hao G., Bankaitis V. A., Scherer P. E., Baldini G. Syndet is a novel SNAP-25 related protein expressed in many tissues. J Cell Sci. 1997 Feb;110(Pt 4):505–513. doi: 10.1242/jcs.110.4.505. [DOI] [PubMed] [Google Scholar]
  289. Wang H., Kavanaugh M. P., North R. A., Kabat D. Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter. Nature. 1991 Aug 22;352(6337):729–731. doi: 10.1038/352729a0. [DOI] [PubMed] [Google Scholar]
  290. Wang W., Hansen P. A., Marshall B. A., Holloszy J. O., Mueckler M. Insulin unmasks a COOH-terminal Glut4 epitope and increases glucose transport across T-tubules in skeletal muscle. J Cell Biol. 1996 Oct;135(2):415–430. doi: 10.1083/jcb.135.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  291. Wang Y., Ye J., Ganapathy V., Longo N. Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2356–2360. doi: 10.1073/pnas.96.5.2356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  292. Warskulat U., Wettstein M., Häussinger D. Betaine is an osmolyte in RAW 264.7 mouse macrophages. FEBS Lett. 1995 Dec 11;377(1):47–50. doi: 10.1016/0014-5793(95)01317-2. [DOI] [PubMed] [Google Scholar]
  293. Warskulat U., Wettstein M., Häussinger D. Osmoregulated taurine transport in H4IIE hepatoma cells and perfused rat liver. Biochem J. 1997 Feb 1;321(Pt 3):683–690. doi: 10.1042/bj3210683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. Watkins P. A., Lu J. F., Steinberg S. J., Gould S. J., Smith K. D., Braiterman L. T. Disruption of the Saccharomyces cerevisiae FAT1 gene decreases very long-chain fatty acyl-CoA synthetase activity and elevates intracellular very long-chain fatty acid concentrations. J Biol Chem. 1998 Jul 17;273(29):18210–18219. doi: 10.1074/jbc.273.29.18210. [DOI] [PubMed] [Google Scholar]
  295. Weinstein S. P., Haber R. S. Differential regulation of glucose transporter isoforms by thyroid hormone in rat heart. Biochim Biophys Acta. 1992 Sep 9;1136(3):302–308. doi: 10.1016/0167-4889(92)90121-q. [DOI] [PubMed] [Google Scholar]
  296. Weinstein S. P., O'Boyle E., Haber R. S. Thyroid hormone increases basal and insulin-stimulated glucose transport in skeletal muscle. The role of GLUT4 glucose transporter expression. Diabetes. 1994 Oct;43(10):1185–1189. doi: 10.2337/diab.43.10.1185. [DOI] [PubMed] [Google Scholar]
  297. Willner J. H., Ginsburg S., Dimauro S. Active transport of carnitine into skeletal muscle. Neurology. 1978 Jul;28(7):721–724. doi: 10.1212/wnl.28.7.721. [DOI] [PubMed] [Google Scholar]
  298. Willott C. A., Young M. E., Leighton B., Kemp G. J., Boehm E. A., Radda G. K., Clarke K. Creatine uptake in isolated soleus muscle: kinetics and dependence on sodium, but not on insulin. Acta Physiol Scand. 1999 Jun;166(2):99–104. doi: 10.1046/j.1365-201x.1999.00539.x. [DOI] [PubMed] [Google Scholar]
  299. Wilson M. C., Jackson V. N., Heddle C., Price N. T., Pilegaard H., Juel C., Bonen A., Montgomery I., Hutter O. F., Halestrap A. P. Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3. J Biol Chem. 1998 Jun 26;273(26):15920–15926. doi: 10.1074/jbc.273.26.15920. [DOI] [PubMed] [Google Scholar]
  300. Wu X., Huang W., Prasad P. D., Seth P., Rajan D. P., Leibach F. H., Chen J., Conway S. J., Ganapathy V. Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther. 1999 Sep;290(3):1482–1492. [PubMed] [Google Scholar]
  301. Wu X., Prasad P. D., Leibach F. H., Ganapathy V. cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem Biophys Res Commun. 1998 May 29;246(3):589–595. doi: 10.1006/bbrc.1998.8669. [DOI] [PubMed] [Google Scholar]
  302. Yamauchi A., Uchida S., Kwon H. M., Preston A. S., Robey R. B., Garcia-Perez A., Burg M. B., Handler J. S. Cloning of a Na(+)- and Cl(-)-dependent betaine transporter that is regulated by hypertonicity. J Biol Chem. 1992 Jan 5;267(1):649–652. [PubMed] [Google Scholar]
  303. Zerangue N., Kavanaugh M. P. ASCT-1 is a neutral amino acid exchanger with chloride channel activity. J Biol Chem. 1996 Nov 8;271(45):27991–27994. doi: 10.1074/jbc.271.45.27991. [DOI] [PubMed] [Google Scholar]
  304. Zhou S. L., Stump D., Kiang C. L., Isola L. M., Berk P. D. Mitochondrial aspartate aminotransferase expressed on the surface of 3T3-L1 adipocytes mediates saturable fatty acid uptake. Proc Soc Exp Biol Med. 1995 Mar;208(3):263–270. doi: 10.3181/00379727-208-43854. [DOI] [PubMed] [Google Scholar]
  305. Ziel F. H., Venkatesan N., Davidson M. B. Glucose transport is rate limiting for skeletal muscle glucose metabolism in normal and STZ-induced diabetic rats. Diabetes. 1988 Jul;37(7):885–890. doi: 10.2337/diab.37.7.885. [DOI] [PubMed] [Google Scholar]
  306. Zorzano A., Balon T. W., Goodman M. N., Ruderman N. B. Insulin and exercise stimulate muscle alpha-aminoisobutyric acid transport by a Na+-K+-ATPase independent pathway. Biochem Biophys Res Commun. 1986 Feb 13;134(3):1342–1349. doi: 10.1016/0006-291x(86)90397-9. [DOI] [PubMed] [Google Scholar]
  307. Zorzano A., Muñoz P., Camps M., Mora C., Testar X., Palacín M. Insulin-induced redistribution of GLUT4 glucose carriers in the muscle fiber. In search of GLUT4 trafficking pathways. Diabetes. 1996 Jan;45 (Suppl 1):S70–S81. doi: 10.2337/diab.45.1.s70. [DOI] [PubMed] [Google Scholar]
  308. Zorzano A., Sevilla L., Camps M., Becker C., Meyer J., Kammermeier H., Muñoz P., Gumà A., Testar X., Palacín M. Regulation of glucose transport, and glucose transporters expression and trafficking in the heart: studies in cardiac myocytes. Am J Cardiol. 1997 Aug 4;80(3A):65A–76A. doi: 10.1016/s0002-9149(97)00459-1. [DOI] [PubMed] [Google Scholar]
  309. Zorzano A., Sevilla L., Tomàs E., Camps M., Gumà A., Palacín M. Trafficking pathway of GLUT4 glucose transporters in muscle (review). Int J Mol Med. 1998 Sep;2(3):263–271. doi: 10.3892/ijmm.2.3.263. [DOI] [PubMed] [Google Scholar]
  310. Zorzano A., Wilkinson W., Kotliar N., Thoidis G., Wadzinkski B. E., Ruoho A. E., Pilch P. F. Insulin-regulated glucose uptake in rat adipocytes is mediated by two transporter isoforms present in at least two vesicle populations. J Biol Chem. 1989 Jul 25;264(21):12358–12363. [PubMed] [Google Scholar]
  311. de Bruijne A. W., Vreeburg H., van Steveninck J. Alternative-substrate inhibition of L-lactate transport via the monocarboxylate-specific carrier system in human erythrocytes. Biochim Biophys Acta. 1985 Feb 14;812(3):841–844. doi: 10.1016/0005-2736(85)90280-9. [DOI] [PubMed] [Google Scholar]
  312. van der Sluijs P., Hull M., Webster P., Mâle P., Goud B., Mellman I. The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell. 1992 Sep 4;70(5):729–740. doi: 10.1016/0092-8674(92)90307-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES