Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Aug 1;349(Pt 3):737–745. doi: 10.1042/bj3490737

Vacuolar proton pyrophosphatase activity and pyrophosphate (PPi) in Toxoplasma gondii as possible chemotherapeutic targets.

C O Rodrigues 1, D A Scott 1, B N Bailey 1, W De Souza 1, M Benchimol 1, B Moreno 1, J A Urbina 1, E Oldfield 1, S N Moreno 1
PMCID: PMC1221200  PMID: 10903134

Abstract

The addition of PP(i) promoted the acidification of a subcellular compartment in cell homogenates of Toxoplasma gondii tachyzoites, implying the presence of a proton-translocating pyrophosphatase. The proton gradient was collapsed by addition of the K(+)/H(+) antiporter nigericin, and was also inhibited by addition of the PP(i) analogue aminomethylenediphosphonate (AMDP). Both proton transport and PP(i) hydrolysis were dependent upon K(+), but Na(+) caused partial inhibition of these activities. PP(i) hydrolysis was sensitive in a dose-dependent manner to AMDP, imidodiphosphate, NaF and to the thiol reagent N-ethylmaleimide. This activity was unaffected by common inhibitors of phosphohydrolases, except that NaO(3)V (sodium orthovanadate) stimulated the activity by 87%. Immunofluorescence microscopy, using antisera raised against conserved peptide sequences of a plant vacuolar pyrophosphatase, suggested that the pyrophosphatase in T. gondii tachyzoites was located in the plasma membrane and intracellular vacuoles of the parasite. High-field (31)P-NMR spectroscopy showed that PP(i )was more abundant than ATP in tachyzoites. Bisphosphonates (PP(i) analogues), drugs that are used in the treatment of bone diseases, inhibited proton transport and PP(i) hydrolysis in tachyzoite homogenates, and also inhibited intracellular proliferation of tachyzoites in tissue culture cells.

Full Text

The Full Text of this article is available as a PDF (236.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltscheffsky M., Nadanaciva S., Schultz A. A pyrophosphate synthase gene: molecular cloning and sequencing of the cDNA encoding the inorganic pyrophosphate synthase from Rhodospirillum rubrum. Biochim Biophys Acta. 1998 May 27;1364(3):301–306. doi: 10.1016/s0005-2728(98)00062-0. [DOI] [PubMed] [Google Scholar]
  2. Berenson J. R., Rosen L., Vescio R., Lau H. S., Woo M., Sioufi A., Kowalski M. O., Knight R. D., Seaman J. J. Pharmacokinetics of pamidronate disodium in patients with cancer with normal or impaired renal function. J Clin Pharmacol. 1997 Apr;37(4):285–290. doi: 10.1002/j.1552-4604.1997.tb04304.x. [DOI] [PubMed] [Google Scholar]
  3. Bergstrom J. D., Bostedor R. G., Masarachia P. J., Reszka A. A., Rodan G. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch Biochem Biophys. 2000 Jan 1;373(1):231–241. doi: 10.1006/abbi.1999.1502. [DOI] [PubMed] [Google Scholar]
  4. Cerdan S., Seelig J. NMR studies of metabolism. Annu Rev Biophys Biophys Chem. 1990;19:43–67. doi: 10.1146/annurev.bb.19.060190.000355. [DOI] [PubMed] [Google Scholar]
  5. Chakrabarti D., Azam T., DelVecchio C., Qiu L., Park Y. I., Allen C. M. Protein prenyl transferase activities of Plasmodium falciparum. Mol Biochem Parasitol. 1998 Aug 1;94(2):175–184. doi: 10.1016/s0166-6851(98)00065-6. [DOI] [PubMed] [Google Scholar]
  6. Chamberland S., Kirst H. A., Current W. L. Comparative activity of macrolides against Toxoplasma gondii demonstrating utility of an in vitro microassay. Antimicrob Agents Chemother. 1991 May;35(5):903–909. doi: 10.1128/aac.35.5.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. David P., Nguyen H., Barbier A., Baron R. The bisphosphonate tiludronate is a potent inhibitor of the osteoclast vacuolar H(+)-ATPase. J Bone Miner Res. 1996 Oct;11(10):1498–1507. doi: 10.1002/jbmr.5650111017. [DOI] [PubMed] [Google Scholar]
  8. Denton H., Brown S. M., Roberts C. W., Alexander J., McDonald V., Thong K. W., Coombs G. H. Comparison of the phosphofructokinase and pyruvate kinase activities of Cryptosporidium parvum, Eimeria tenella and Toxoplasma gondii. Mol Biochem Parasitol. 1996 Feb-Mar;76(1-2):23–29. doi: 10.1016/0166-6851(95)02527-8. [DOI] [PubMed] [Google Scholar]
  9. Docampo R., Scott D. A., Vercesi A. E., Moreno S. N. Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. Biochem J. 1995 Sep 15;310(Pt 3):1005–1012. doi: 10.1042/bj3101005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Finbow M. E., Harrison M. A. The vacuolar H+-ATPase: a universal proton pump of eukaryotes. Biochem J. 1997 Jun 15;324(Pt 3):697–712. doi: 10.1042/bj3240697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fisher J. E., Rogers M. J., Halasy J. M., Luckman S. P., Hughes D. E., Masarachia P. J., Wesolowski G., Russell R. G., Rodan G. A., Reszka A. A. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):133–138. doi: 10.1073/pnas.96.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frith J. C., Mönkkönen J., Blackburn G. M., Russell R. G., Rogers M. J. Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5'-(beta, gamma-dichloromethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res. 1997 Sep;12(9):1358–1367. doi: 10.1359/jbmr.1997.12.9.1358. [DOI] [PubMed] [Google Scholar]
  13. Garcia C. R., Ann S. E., Tavares E. S., Dluzewski A. R., Mason W. T., Paiva F. B. Acidic calcium pools in intraerythrocytic malaria parasites. Eur J Cell Biol. 1998 Jun;76(2):133–138. doi: 10.1016/S0171-9335(98)80026-5. [DOI] [PubMed] [Google Scholar]
  14. Gordon-Weeks R., Parmar S., Davies T. G., Leigh R. A. Structural aspects of the effectiveness of bisphosphonates as competitive inhibitors of the plant vacuolar proton-pumping pyrophosphatase. Biochem J. 1999 Feb 1;337(Pt 3):373–377. [PMC free article] [PubMed] [Google Scholar]
  15. Hoult D. I., Busby S. J., Gadian D. G., Radda G. K., Richards R. E., Seeley P. J. Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature. 1974 Nov 22;252(5481):285–287. doi: 10.1038/252285a0. [DOI] [PubMed] [Google Scholar]
  16. Hughes D. E., Wright K. R., Uy H. L., Sasaki A., Yoneda T., Roodman G. D., Mundy G. R., Boyce B. F. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res. 1995 Oct;10(10):1478–1487. doi: 10.1002/jbmr.5650101008. [DOI] [PubMed] [Google Scholar]
  17. Lu H. G., Zhong L., Chang K. P., Docampo R. Intracellular Ca2+ pool content and signaling and expression of a calcium pump are linked to virulence in Leishmania mexicana amazonesis amastigotes. J Biol Chem. 1997 Apr 4;272(14):9464–9473. doi: 10.1074/jbc.272.14.9464. [DOI] [PubMed] [Google Scholar]
  18. Lu H. G., Zhong L., de Souza W., Benchimol M., Moreno S., Docampo R. Ca2+ content and expression of an acidocalcisomal calcium pump are elevated in intracellular forms of Trypanosoma cruzi. Mol Cell Biol. 1998 Apr;18(4):2309–2323. doi: 10.1128/mcb.18.4.2309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lundin M., Deopujari S. W., Lichko L., da Silva L. P., Baltscheffsky H. Characterization of a mitochondrial inorganic pyrophosphatase in Saccharomyces cerevisiae. Biochim Biophys Acta. 1992 Jan 16;1098(2):217–223. doi: 10.1016/s0005-2728(05)80339-1. [DOI] [PubMed] [Google Scholar]
  20. Luo S., Marchesini N., Moreno S. N., Docampo R. A plant-like vacuolar H(+)-pyrophosphatase in Plasmodium falciparum. FEBS Lett. 1999 Oct 29;460(2):217–220. doi: 10.1016/s0014-5793(99)01353-8. [DOI] [PubMed] [Google Scholar]
  21. Mansurova S. E. Inorganic pyrophosphate in mitochondrial metabolism. Biochim Biophys Acta. 1989 Dec 7;977(3):237–247. doi: 10.1016/s0005-2728(89)80078-7. [DOI] [PubMed] [Google Scholar]
  22. Marchesini N., Luo S., Rodrigues C. O., Moreno S. N., Docampo R. Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites. Biochem J. 2000 Apr 1;347(Pt 1):243–253. [PMC free article] [PubMed] [Google Scholar]
  23. Martin M. B., Arnold W., Heath H. T., 3rd, Urbina J. A., Oldfield E. Nitrogen-containing bisphosphonates as carbocation transition state analogs for isoprenoid biosynthesis. Biochem Biophys Res Commun. 1999 Oct 5;263(3):754–758. doi: 10.1006/bbrc.1999.1404. [DOI] [PubMed] [Google Scholar]
  24. Moreno S. N., Zhong L. Acidocalcisomes in Toxoplasma gondii tachyzoites. Biochem J. 1996 Jan 15;313(Pt 2):655–659. doi: 10.1042/bj3130655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moreno S. N., Zhong L., Lu H. G., Souza W. D., Benchimol M. Vacuolar-type H+-ATPase regulates cytoplasmic pH in Toxoplasma gondii tachyzoites. Biochem J. 1998 Mar 1;330(Pt 2):853–860. doi: 10.1042/bj3300853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Norrby R., Lindholm L., Lycke E. Lysosomes of Toxoplasma gondii and their possible relation to the host-cell penetration of toxoplasma parasites. J Bacteriol. 1968 Oct;96(4):916–919. doi: 10.1128/jb.96.4.916-919.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peng Z. Y., Mansour J. M., Araujo F., Ju J. Y., McKenna C. E., Mansour T. E. Some phosphonic acid analogs as inhibitors of pyrophosphate-dependent phosphofructokinase, a novel target in Toxoplasma gondii. Biochem Pharmacol. 1995 Jan 6;49(1):105–113. doi: 10.1016/0006-2952(94)00437-q. [DOI] [PubMed] [Google Scholar]
  28. Peng Z. Y., Mansour T. E. Purification and properties of a pyrophosphate-dependent phosphofructokinase from Toxoplasma gondii. Mol Biochem Parasitol. 1992 Sep;54(2):223–230. doi: 10.1016/0166-6851(92)90114-y. [DOI] [PubMed] [Google Scholar]
  29. Porras A. G., Holland S. D., Gertz B. J. Pharmacokinetics of alendronate. Clin Pharmacokinet. 1999 May;36(5):315–328. doi: 10.2165/00003088-199936050-00002. [DOI] [PubMed] [Google Scholar]
  30. Rodan G. A. Mechanisms of action of bisphosphonates. Annu Rev Pharmacol Toxicol. 1998;38:375–388. doi: 10.1146/annurev.pharmtox.38.1.375. [DOI] [PubMed] [Google Scholar]
  31. Rodrigues C. O., Scott D. A., Docampo R. Characterization of a vacuolar pyrophosphatase in Trypanosoma brucei and its localization to acidocalcisomes. Mol Cell Biol. 1999 Nov;19(11):7712–7723. doi: 10.1128/mcb.19.11.7712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rodrigues C. O., Scott D. A., Docampo R. Presence of a vacuolar H+-pyrophosphatase in promastigotes of Leishmania donovani and its localization to a different compartment from the vacuolar H+-ATPase. Biochem J. 1999 Jun 15;340(Pt 3):759–766. [PMC free article] [PubMed] [Google Scholar]
  33. Sarafian V., Kim Y., Poole R. J., Rea P. A. Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1775–1779. doi: 10.1073/pnas.89.5.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Scott D. A., de Souza W., Benchimol M., Zhong L., Lu H. G., Moreno S. N., Docampo R. Presence of a plant-like proton-pumping pyrophosphatase in acidocalcisomes of Trypanosoma cruzi. J Biol Chem. 1998 Aug 21;273(34):22151–22158. doi: 10.1074/jbc.273.34.22151. [DOI] [PubMed] [Google Scholar]
  35. Shaw M. K., Roos D. S., Tilney L. G. Acidic compartments and rhoptry formation in Toxoplasma gondii. Parasitology. 1998 Nov;117(Pt 5):435–443. doi: 10.1017/s0031182098003278. [DOI] [PubMed] [Google Scholar]
  36. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Urbina J. A., Moreno B., Vierkotter S., Oldfield E., Payares G., Sanoja C., Bailey B. N., Yan W., Scott D. A., Moreno S. N. Trypanosoma cruzi contains major pyrophosphate stores, and its growth in vitro and in vivo is blocked by pyrophosphate analogs. J Biol Chem. 1999 Nov 19;274(47):33609–33615. doi: 10.1074/jbc.274.47.33609. [DOI] [PubMed] [Google Scholar]
  38. Vercesi A. E., Moreno S. N., Docampo R. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei. Biochem J. 1994 Nov 15;304(Pt 1):227–233. doi: 10.1042/bj3040227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wang Y., Leigh R. A., Kaestner K. H., Sze H. Electrogenic h-pumping pyrophosphatase in tonoplast vesicles of oat roots. Plant Physiol. 1986 Jun;81(2):497–502. doi: 10.1104/pp.81.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ylitalo R., Mönkkönen J., Urtti A., Ylitalo P. Accumulation of bisphosphonates in the aorta and some other tissues of healthy and atherosclerotic rabbits. J Lab Clin Med. 1996 Feb;127(2):200–206. doi: 10.1016/s0022-2143(96)90079-7. [DOI] [PubMed] [Google Scholar]
  41. Zhen R. G., Baykov A. A., Bakuleva N. P., Rea P. A. Aminomethylenediphosphonate: A Potent Type-Specific Inhibitor of Both Plant and Phototrophic Bacterial H+-Pyrophosphatases. Plant Physiol. 1994 Jan;104(1):153–159. doi: 10.1104/pp.104.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. van Beek E., Pieterman E., Cohen L., Löwik C., Papapoulos S. Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem Biophys Res Commun. 1999 Oct 14;264(1):108–111. doi: 10.1006/bbrc.1999.1499. [DOI] [PubMed] [Google Scholar]
  43. van Beek E., Pieterman E., Cohen L., Löwik C., Papapoulos S. Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem Biophys Res Commun. 1999 Oct 14;264(1):108–111. doi: 10.1006/bbrc.1999.1499. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES