Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Aug 1;349(Pt 3):747–755. doi: 10.1042/bj3490747

Diastereoisomeric analogues of gramicidin S: structure, biologicalactivity and interaction with lipid bilayers.

M Jelokhani-Niaraki 1, L H Kondejewski 1, S W Farmer 1, R E Hancock 1, C M Kay 1, R S Hodges 1
PMCID: PMC1221201  PMID: 10903135

Abstract

Analogues of a structurally equivalent version of theantimicrobial decameric cyclic peptide gramicidin S, GS10 [cyclo-(Val-Lys-Leu-d-Tyr-Pro)(2)], were designed to study theeffect of distortion in the beta-sheet/beta-turn structure of thecyclic peptide on its biological activity. In one approach, thehydrophobic nature of GS10 was conserved, and single amino acids in itsbackbone were replaced systematically with their correspondingenantiomers to give five diastereoisomeric analogues. In a relatedapproach, a more basic and hydrophilic analogue of GS10 [cyclo-(Lys-Val-Lys-d-Tyr-Pro(5)-Lys-Leu-Lys-d-Tyr-Pro(10))], together with two of itsmonosubstituted diastereoisomeric analogues (featuring d-Lys(1) or d-Val(2) respectively), weresynthesized. CD spectra were measured in a variety of environments,i.e. aqueous, aqueous trifluoroethanol and those containing SDSmicelles or phospholipid vesicles. In comparison with GS10 spectra, CDspectra of both groups of analogues in these environments exhibitedstructural distortion. Moreover, compared with GS10, antimicrobial andhaemolytic activities of the analogues were drastically decreased, implying the existence of a threshold minimum amphipathicity foreffective biological activity. However, in both groups of analogues,there was a correlation between amphipathicity and antimicrobial andhaemolytic activities. In the second group of analogues, bothelectrostatic and hydrophobic factors were related to theirantimicrobial and haemolytic activities. In order to gain an insightinto the nature of the biological activity of the two classes of cyclicpeptides, the relationship of their structure to interaction with lipidmembranes, and the implied mechanisms, were analysed in some detail inthe present study.

Full Text

The Full Text of this article is available as a PDF (247.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando S., Kato T., Izumiya N. Studies of peptide antibiotics. XLVI. Syntheses of gramicidin S analogs containing D-alpha,beta-diaminopropionic acid or alpha,beta-dehydroalanine. Int J Pept Protein Res. 1985 Jan;25(1):15–26. doi: 10.1111/j.1399-3011.1985.tb02142.x. [DOI] [PubMed] [Google Scholar]
  2. Ando S., Nishikawa H., Takiguchi H., Lee S., Sugihara G. Antimicrobial specificity and hemolytic activity of cyclized basic amphiphilic beta-structural model peptides and their interactions with phospholipid bilayers. Biochim Biophys Acta. 1993 Apr 8;1147(1):42–49. doi: 10.1016/0005-2736(93)90314-p. [DOI] [PubMed] [Google Scholar]
  3. Bodkin M. J., Goodfellow J. M. Hydrophobic solvation in aqueous trifluoroethanol solution. Biopolymers. 1996 Jul;39(1):43–50. doi: 10.1002/(SICI)1097-0282(199607)39:1%3C43::AID-BIP5%3E3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  4. Briggs M. S., Cornell D. G., Dluhy R. A., Gierasch L. M. Conformations of signal peptides induced by lipids suggest initial steps in protein export. Science. 1986 Jul 11;233(4760):206–208. doi: 10.1126/science.2941862. [DOI] [PubMed] [Google Scholar]
  5. Dathe M., Schümann M., Wieprecht T., Winkler A., Beyermann M., Krause E., Matsuzaki K., Murase O., Bienert M. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry. 1996 Sep 24;35(38):12612–12622. doi: 10.1021/bi960835f. [DOI] [PubMed] [Google Scholar]
  6. Epand R. M., Vogel H. J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):11–28. doi: 10.1016/s0005-2736(99)00198-4. [DOI] [PubMed] [Google Scholar]
  7. Gibbs A. C., Kondejewski L. H., Gronwald W., Nip A. M., Hodges R. S., Sykes B. D., Wishart D. S. Unusual beta-sheet periodicity in small cyclic peptides. Nat Struct Biol. 1998 Apr;5(4):284–288. doi: 10.1038/nsb0498-284. [DOI] [PubMed] [Google Scholar]
  8. Heitz F., Kaddari F., Van Mau N., Verducci J., Raniri Seheno H., Lazaro R. Ionic pores formed by cyclic peptides. Biochimie. 1989 Jan;71(1):71–76. doi: 10.1016/0300-9084(89)90134-x. [DOI] [PubMed] [Google Scholar]
  9. Kondejewski L. H., Farmer S. W., Wishart D. S., Hancock R. E., Hodges R. S. Gramicidin S is active against both gram-positive and gram-negative bacteria. Int J Pept Protein Res. 1996 Jun;47(6):460–466. doi: 10.1111/j.1399-3011.1996.tb01096.x. [DOI] [PubMed] [Google Scholar]
  10. Kondejewski L. H., Farmer S. W., Wishart D. S., Kay C. M., Hancock R. E., Hodges R. S. Modulation of structure and antibacterial and hemolytic activity by ring size in cyclic gramicidin S analogs. J Biol Chem. 1996 Oct 11;271(41):25261–25268. doi: 10.1074/jbc.271.41.25261. [DOI] [PubMed] [Google Scholar]
  11. Kondejewski L. H., Jelokhani-Niaraki M., Farmer S. W., Lix B., Kay C. M., Sykes B. D., Hancock R. E., Hodges R. S. Dissociation of antimicrobial and hemolytic activities in cyclic peptide diastereomers by systematic alterations in amphipathicity. J Biol Chem. 1999 May 7;274(19):13181–13192. doi: 10.1074/jbc.274.19.13181. [DOI] [PubMed] [Google Scholar]
  12. McInnes C., Kondejewski L. H., Hodges R. S., Sykes B. D. Development of the structural basis for antimicrobial and hemolytic activities of peptides based on gramicidin S and design of novel analogs using NMR spectroscopy. J Biol Chem. 2000 May 12;275(19):14287–14294. doi: 10.1074/jbc.275.19.14287. [DOI] [PubMed] [Google Scholar]
  13. Oren Z., Hong J., Shai Y. A repertoire of novel antibacterial diastereomeric peptides with selective cytolytic activity. J Biol Chem. 1997 Jun 6;272(23):14643–14649. doi: 10.1074/jbc.272.23.14643. [DOI] [PubMed] [Google Scholar]
  14. Prenner E. J., Lewis R. N., Neuman K. C., Gruner S. M., Kondejewski L. H., Hodges R. S., McElhaney R. N. Nonlamellar phases induced by the interaction of gramicidin S with lipid bilayers. A possible relationship to membrane-disrupting activity. Biochemistry. 1997 Jun 24;36(25):7906–7916. doi: 10.1021/bi962785k. [DOI] [PubMed] [Google Scholar]
  15. Rackovsky S., Scheraga H. A. Intermolecular anti-parallel beta sheet: Comparison of predicted and observed conformations of gramicidin S. Proc Natl Acad Sci U S A. 1980 Dec;77(12):6965–6967. doi: 10.1073/pnas.77.12.6965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stern A., Gibbons W. A., Craig L. C. A conformational analysis of gramicidin S-A by nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1968 Oct;61(2):734–741. doi: 10.1073/pnas.61.2.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Surewicz W. K., Mantsch H. H., Stahl G. L., Epand R. M. Infrared spectroscopic evidence of conformational transitions of an atrial natriuretic peptide. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7028–7030. doi: 10.1073/pnas.84.20.7028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tamaki M., Takimoto M., Nozaki S., Muramatsu I. Adsorption of cyclic peptides analogous to gramicidin S and gratisin onto octadecylsilica stationary phase and bacterial cells. J Chromatogr. 1987 Jan 23;413:287–292. doi: 10.1016/0378-4347(87)80241-4. [DOI] [PubMed] [Google Scholar]
  19. Wieprecht T., Dathe M., Schümann M., Krause E., Beyermann M., Bienert M. Conformational and functional study of magainin 2 in model membrane environments using the new approach of systematic double-D-amino acid replacement. Biochemistry. 1996 Aug 20;35(33):10844–10853. doi: 10.1021/bi960362c. [DOI] [PubMed] [Google Scholar]
  20. Yagi Y., Kimura S., Imanishi Y. Interaction of gramicidin S analogs with lipid bilayer membrane. Int J Pept Protein Res. 1990 Jul;36(1):18–25. doi: 10.1111/j.1399-3011.1990.tb00079.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES