Abstract
The first epidermal growth factor-like module of human plasma protein S (EGF1, residues 76-116) was chemically synthesized and tested for its ability to inhibit the anticoagulant cofactor activity of protein S for the anticoagulant protease, activated protein C (APC). EGF1 completely inhibited the stimulation of APC activity by protein S in plasma coagulation assays, with 50% inhibition at approx. 1 microM+ EGF1, suggesting direct binding of EGF1 to APC. To investigate a direct interaction between EGF1 and APC, fluorescence resonance energy transfer (FRET) experiments were employed. APC labelled in the active site with fluorescein as the donor, and phospholipid vesicles containing octadecylrhodamine as the acceptor, showed that EGF1 association with APC caused an increase in energy transfer consistent with a relocation of the active site of APC from 94 A (9.4 nm) to 85 A above the phospholipid surface (assuming kappa(2)=2/3). An identical increase in energy transfer between the APC active site-bound fluorescein and phospholipid-bound rhodamine was obtained upon association of protein S or protein S-C4b-binding protein complex with APC. The latter suggests the presence of a ternary complex of protein S-C4b-binding protein with APC on the phospholipid surface. To confirm a direct interaction of EGF1 with APC, rhodamine was covalently attached to the alpha-N-terminus of EGF1, and binding of the labelled EGF1 to APC was directly demonstrated using FRET. The data suggested a separation between the active site of APC and the N-terminus of EGF1 of 76 A (kappa(2)=2/3), placing the APC-bound protein S-EGF1 close to, but above, the phospholipid surface and near the two EGF domains of APC. Thus we provide direct evidence for binding of protein S-EGF1 to APC and show that it induces a conformational change in APC.
Full Text
The Full Text of this article is available as a PDF (160.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakker H. M., Tans G., Janssen-Claessen T., Thomassen M. C., Hemker H. C., Griffin J. H., Rosing J. The effect of phospholipids, calcium ions and protein S on rate constants of human factor Va inactivation by activated human protein C. Eur J Biochem. 1992 Aug 15;208(1):171–178. doi: 10.1111/j.1432-1033.1992.tb17171.x. [DOI] [PubMed] [Google Scholar]
- Comp P. C., Nixon R. R., Cooper M. R., Esmon C. T. Familial protein S deficiency is associated with recurrent thrombosis. J Clin Invest. 1984 Dec;74(6):2082–2088. doi: 10.1172/JCI111632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahlbäck B., Hildebrand B., Malm J. Characterization of functionally important domains in human vitamin K-dependent protein S using monoclonal antibodies. J Biol Chem. 1990 May 15;265(14):8127–8135. [PubMed] [Google Scholar]
- Dahlbäck B., Stenflo J. High molecular weight complex in human plasma between vitamin K-dependent protein S and complement component C4b-binding protein. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2512–2516. doi: 10.1073/pnas.78.4.2512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dewey T. G., Hammes G. G. Calculation on fluorescence resonance energy transfer on surfaces. Biophys J. 1980 Dec;32(3):1023–1035. doi: 10.1016/S0006-3495(80)85033-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Di Scipio R. G., Hermodson M. A., Yates S. G., Davie E. W. A comparison of human prothrombin, factor IX (Christmas factor), factor X (Stuart factor), and protein S. Biochemistry. 1977 Feb 22;16(4):698–706. doi: 10.1021/bi00623a022. [DOI] [PubMed] [Google Scholar]
- Fernández J. A., Heeb M. J., Griffin J. H. Identification of residues 413-433 of plasma protein S as essential for binding to C4b-binding protein. J Biol Chem. 1993 Aug 5;268(22):16788–16794. [PubMed] [Google Scholar]
- Griffin J. H., Gruber A., Fernández J. A. Reevaluation of total, free, and bound protein S and C4b-binding protein levels in plasma anticoagulated with citrate or hirudin. Blood. 1992 Jun 15;79(12):3203–3211. [PubMed] [Google Scholar]
- Hackeng T. M., Dawson P. E., Kent S. B., Griffin J. H. Chemical synthesis of human protein S thrombin-sensitive module and first epidermal growth factor module. Biopolymers. 1998 Aug;46(2):53–63. doi: 10.1002/(SICI)1097-0282(199808)46:2<53::AID-BIP1>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
- Hackeng T. M., Hessing M., van 't Veer C., Meijer-Huizinga F., Meijers J. C., de Groot P. G., van Mourik J. A., Bouma B. N. Protein S binding to human endothelial cells is required for expression of cofactor activity for activated protein C. J Biol Chem. 1993 Feb 25;268(6):3993–4000. [PubMed] [Google Scholar]
- Hackeng T. M., van 't Veer C., Meijers J. C., Bouma B. N. Human protein S inhibits prothrombinase complex activity on endothelial cells and platelets via direct interactions with factors Va and Xa. J Biol Chem. 1994 Aug 19;269(33):21051–21058. [PubMed] [Google Scholar]
- He X., Shen L., Dahlbäck B. Expression and functional characterization of chimeras between human and bovine vitamin-K-dependent protein-S-defining modules important for the species specificity of the activated protein C cofactor activity. Eur J Biochem. 1995 Jan 15;227(1-2):433–440. doi: 10.1111/j.1432-1033.1995.tb20406.x. [DOI] [PubMed] [Google Scholar]
- He X., Shen L., Villoutreix B. O., Dahlbäck B. Amino acid residues in thrombin-sensitive region and first epidermal growth factor domain of vitamin K-dependent protein S determining specificity of the activated protein C cofactor function. J Biol Chem. 1998 Oct 16;273(42):27449–27458. doi: 10.1074/jbc.273.42.27449. [DOI] [PubMed] [Google Scholar]
- Heeb M. J., Kojima Y., Rosing J., Tans G., Griffin J. H. C-terminal residues 621-635 of protein S are essential for binding to factor Va. J Biol Chem. 1999 Dec 17;274(51):36187–36192. doi: 10.1074/jbc.274.51.36187. [DOI] [PubMed] [Google Scholar]
- Hillarp A., Dahlbäck B. Novel subunit in C4b-binding protein required for protein S binding. J Biol Chem. 1988 Sep 5;263(25):12759–12764. [PubMed] [Google Scholar]
- Husten E. J., Esmon C. T., Johnson A. E. The active site of blood coagulation factor Xa. Its distance from the phospholipid surface and its conformational sensitivity to components of the prothrombinase complex. J Biol Chem. 1987 Sep 25;262(27):12953–12961. [PubMed] [Google Scholar]
- Kalafatis M., Rand M. D., Mann K. G. The mechanism of inactivation of human factor V and human factor Va by activated protein C. J Biol Chem. 1994 Dec 16;269(50):31869–31880. [PubMed] [Google Scholar]
- Leroy-Matheron C., Gouault-Heilmann M., Aiach M., Gandrille S. A mutation of the active protein S gene leading to an EGF1-lacking protein in a family with qualitative (type II) deficiency. Blood. 1998 Jun 15;91(12):4608–4615. [PubMed] [Google Scholar]
- Marlar R. A., Kleiss A. J., Griffin J. H. Mechanism of action of human activated protein C, a thrombin-dependent anticoagulant enzyme. Blood. 1982 May;59(5):1067–1072. [PubMed] [Google Scholar]
- Mather T., Oganessyan V., Hof P., Huber R., Foundling S., Esmon C., Bode W. The 2.8 A crystal structure of Gla-domainless activated protein C. EMBO J. 1996 Dec 16;15(24):6822–6831. [PMC free article] [PubMed] [Google Scholar]
- Mutucumarana V. P., Duffy E. J., Lollar P., Johnson A. E. The active site of factor IXa is located far above the membrane surface and its conformation is altered upon association with factor VIIIa. A fluorescence study. J Biol Chem. 1992 Aug 25;267(24):17012–17021. [PubMed] [Google Scholar]
- Nelsestuen G. L., Kisiel W., Di Scipio R. G. Interaction of vitamin K dependent proteins with membranes. Biochemistry. 1978 May 30;17(11):2134–2138. doi: 10.1021/bi00604a017. [DOI] [PubMed] [Google Scholar]
- Nelson R. M., VanDusen W. J., Friedman P. A., Long G. L. beta-Hydroxyaspartic acid and beta-hydroxyasparagine residues in recombinant human protein S are not required for anticoagulant cofactor activity or for binding to C4b-binding protein. J Biol Chem. 1991 Nov 5;266(31):20586–20589. [PubMed] [Google Scholar]
- Nicolaes G. A., Tans G., Thomassen M. C., Hemker H. C., Pabinger I., Varadi K., Schwarz H. P., Rosing J. Peptide bond cleavages and loss of functional activity during inactivation of factor Va and factor VaR506Q by activated protein C. J Biol Chem. 1995 Sep 8;270(36):21158–21166. doi: 10.1074/jbc.270.36.21158. [DOI] [PubMed] [Google Scholar]
- Nishioka J., Suzuki K. Inhibition of cofactor activity of protein S by a complex of protein S and C4b-binding protein. Evidence for inactive ternary complex formation between protein S, C4b-binding protein, and activated protein C. J Biol Chem. 1990 Jun 5;265(16):9072–9076. [PubMed] [Google Scholar]
- Rosing J., Hoekema L., Nicolaes G. A., Thomassen M. C., Hemker H. C., Varadi K., Schwarz H. P., Tans G. Effects of protein S and factor Xa on peptide bond cleavages during inactivation of factor Va and factor VaR506Q by activated protein C. J Biol Chem. 1995 Nov 17;270(46):27852–27858. doi: 10.1074/jbc.270.46.27852. [DOI] [PubMed] [Google Scholar]
- Schnölzer M., Alewood P., Jones A., Alewood D., Kent S. B. In situ neutralization in Boc-chemistry solid phase peptide synthesis. Rapid, high yield assembly of difficult sequences. Int J Pept Protein Res. 1992 Sep-Oct;40(3-4):180–193. doi: 10.1111/j.1399-3011.1992.tb00291.x. [DOI] [PubMed] [Google Scholar]
- Solymoss S., Tucker M. M., Tracy P. B. Kinetics of inactivation of membrane-bound factor Va by activated protein C. Protein S modulates factor Xa protection. J Biol Chem. 1988 Oct 15;263(29):14884–14890. [PubMed] [Google Scholar]
- Stenberg Y., Drakenberg T., Dahlbäck B., Stenflo J. Characterization of recombinant epidermal growth factor (EGF)-like modules from vitamin-K-dependent protein S expressed in Spodoptera cells--the cofactor activity depends on the N-terminal EGF module in human protein S. Eur J Biochem. 1998 Feb 1;251(3):558–564. doi: 10.1046/j.1432-1327.1998.2510558.x. [DOI] [PubMed] [Google Scholar]
- Stenflo J., Lundwall A., Dahlbäck B. beta-Hydroxyasparagine in domains homologous to the epidermal growth factor precursor in vitamin K-dependent protein S. Proc Natl Acad Sci U S A. 1987 Jan;84(2):368–372. doi: 10.1073/pnas.84.2.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker F. J. Regulation of activated protein C by a new protein. A possible function for bovine protein S. J Biol Chem. 1980 Jun 25;255(12):5521–5524. [PubMed] [Google Scholar]
- Ye J., Esmon N. L., Esmon C. T., Johnson A. E. The active site of thrombin is altered upon binding to thrombomodulin. Two distinct structural changes are detected by fluorescence, but only one correlates with protein C activation. J Biol Chem. 1991 Dec 5;266(34):23016–23021. [PubMed] [Google Scholar]
- Yegneswaran S., Smirnov M. D., Safa O., Esmon N. L., Esmon C. T., Johnson A. E. Relocating the active site of activated protein C eliminates the need for its protein S cofactor. A fluorescence resonance energy transfer study. J Biol Chem. 1999 Feb 26;274(9):5462–5468. doi: 10.1074/jbc.274.9.5462. [DOI] [PubMed] [Google Scholar]
- Yegneswaran S., Wood G. M., Esmon C. T., Johnson A. E. Protein S alters the active site location of activated protein C above the membrane surface. A fluorescence resonance energy transfer study of topography. J Biol Chem. 1997 Oct 3;272(40):25013–25021. doi: 10.1074/jbc.272.40.25013. [DOI] [PubMed] [Google Scholar]