Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Aug 1;349(Pt 3):765–773. doi: 10.1042/bj3490765

Regulation of interleukin-6 gene expression by pro-inflammatory cytokines in a colon cancer cell line.

S Legrand-Poels 1, S Schoonbroodt 1, J Piette 1
PMCID: PMC1221203  PMID: 10903137

Abstract

The two carcinoma cell lines HeLa and HTM-29 show different behaviour in terms of interleukin-6 (IL-6) production. Analyses of secreted IL-6 by ELISA and of IL-6 mRNA by reverse transcription-PCR revealed that, whereas HeLa cells produced high levels of IL-6 in response to tumour necrosis factor-alpha (TNF-alpha) and IL-1beta, the HTM-29 cell line failed to produce both IL-6 protein and mRNA. Nevertheless, the transcription factors nuclear factor-kappaB (NF-kappaB) and NF-IL6, the main factors involved in IL-6 gene transcriptional activation by cytokines, were activated in both cell lines after treatment with TNF-alpha or IL-1beta. In order to verify that the lack of IL-6 expression in HTM-29 cells was not due to an endogenous IL-6 gene deficiency or to IL-6 mRNA instability, we carried out transient transfection assays with an IL-6 promoter-reporter construct. Strong activation of the IL-6 promoter by cytokines could be observed in HeLa cells, whereas no induction could be detected in cytokine-treated HTM-29 cells. These cytokines induced a very strong stimulation of NF-kappaB-mediated transcription in HeLa cells transfected with a kappaB luceriferase reporter construct, whereas no induction could be detected in cytokine-stimulated HTM-29 cells. Thus IL-6 promoter repression in HTM-29 cells probably results from a failure of cytokine-activated NF-kappaB to exert its transactivating activities. Western blotting experiments demonstrated that the lack of NF-kappaB-mediated transcription was not due to increased expression of IkappaB (inhibitor of NF-kappaB) proteins in HTM-29 cells. Co-transfection experiments with the kappaB Luc reporter construct and the CBP [CREB (cAMP response element binding protein) binding protein] expression vector showed that the impairment in NF-kappaB-dependent transcription did not result from a deficiency in the co-activator CBP. Interestingly, both NF-kappaB-mediated transcription and IL-6 promoter activation could be restored in HTM-29 cells by transfection with RelA. Furthermore, CBP could have a significant synergistic effect on exogenous RelA-mediated transcription. Since sequencing of the endogenous relA gene did not reveal any mutation, it is likely that repression of NF-kappaB-mediated transcription results from negative cross-talk between NF-kappaB and another nuclear factor specifically expressed or regulated by TNF-alpha in HTM-29 cells.

Full Text

The Full Text of this article is available as a PDF (203.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akira S., Isshiki H., Sugita T., Tanabe O., Kinoshita S., Nishio Y., Nakajima T., Hirano T., Kishimoto T. A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J. 1990 Jun;9(6):1897–1906. doi: 10.1002/j.1460-2075.1990.tb08316.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arenzana-Seisdedos F., Thompson J., Rodriguez M. S., Bachelerie F., Thomas D., Hay R. T. Inducible nuclear expression of newly synthesized I kappa B alpha negatively regulates DNA-binding and transcriptional activities of NF-kappa B. Mol Cell Biol. 1995 May;15(5):2689–2696. doi: 10.1128/mcb.15.5.2689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baumann H., Gauldie J. The acute phase response. Immunol Today. 1994 Feb;15(2):74–80. doi: 10.1016/0167-5699(94)90137-6. [DOI] [PubMed] [Google Scholar]
  4. Bours V., Burd P. R., Brown K., Villalobos J., Park S., Ryseck R. P., Bravo R., Kelly K., Siebenlist U. A novel mitogen-inducible gene product related to p50/p105-NF-kappa B participates in transactivation through a kappa B site. Mol Cell Biol. 1992 Feb;12(2):685–695. doi: 10.1128/mcb.12.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chariot A., van Lint C., Chapelier M., Gielen J., Merville M. P., Bours V. CBP and histone deacetylase inhibition enhance the transactivation potential of the HOXB7 homeodomain-containing protein. Oncogene. 1999 Jul 8;18(27):4007–4014. doi: 10.1038/sj.onc.1202776. [DOI] [PubMed] [Google Scholar]
  6. Dejardin E., Deregowski V., Chapelier M., Jacobs N., Gielen J., Merville M. P., Bours V. Regulation of NF-kappaB activity by I kappaB-related proteins in adenocarcinoma cells. Oncogene. 1999 Apr 22;18(16):2567–2577. doi: 10.1038/sj.onc.1202599. [DOI] [PubMed] [Google Scholar]
  7. Elias J. A., Lentz V. IL-1 and tumor necrosis factor synergistically stimulate fibroblast IL-6 production and stabilize IL-6 messenger RNA. J Immunol. 1990 Jul 1;145(1):161–166. [PubMed] [Google Scholar]
  8. Ghosh S., May M. J., Kopp E. B. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225–260. doi: 10.1146/annurev.immunol.16.1.225. [DOI] [PubMed] [Google Scholar]
  9. Ito C. Y., Kazantsev A. G., Baldwin A. S., Jr Three NF-kappa B sites in the I kappa B-alpha promoter are required for induction of gene expression by TNF alpha. Nucleic Acids Res. 1994 Sep 11;22(18):3787–3792. doi: 10.1093/nar/22.18.3787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Janknecht R., Hunter T. Transcription. A growing coactivator network. Nature. 1996 Sep 5;383(6595):22–23. doi: 10.1038/383022a0. [DOI] [PubMed] [Google Scholar]
  11. Janknecht R., Hunter T. Versatile molecular glue. Transcriptional control. Curr Biol. 1996 Aug 1;6(8):951–954. doi: 10.1016/s0960-9822(02)00636-x. [DOI] [PubMed] [Google Scholar]
  12. Kamei Y., Xu L., Heinzel T., Torchia J., Kurokawa R., Gloss B., Lin S. C., Heyman R. A., Rose D. W., Glass C. K. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell. 1996 May 3;85(3):403–414. doi: 10.1016/s0092-8674(00)81118-6. [DOI] [PubMed] [Google Scholar]
  13. Kishimoto T., Taga T., Akira S. Cytokine signal transduction. Cell. 1994 Jan 28;76(2):253–262. doi: 10.1016/0092-8674(94)90333-6. [DOI] [PubMed] [Google Scholar]
  14. Libermann T. A., Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol. 1990 May;10(5):2327–2334. doi: 10.1128/mcb.10.5.2327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mallardo M., Giordano V., Dragonetti E., Scala G., Quinto I. DNA damaging agents increase the stability of interleukin-1 alpha, interleukin-1 beta, and interleukin-6 transcripts and the production of the relative proteins. J Biol Chem. 1994 May 27;269(21):14899–14904. [PubMed] [Google Scholar]
  16. Matsusaka T., Fujikawa K., Nishio Y., Mukaida N., Matsushima K., Kishimoto T., Akira S. Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10193–10197. doi: 10.1073/pnas.90.21.10193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Muraoka M., Konishi M., Kikuchi-Yanoshita R., Tanaka K., Shitara N., Chong J. M., Iwama T., Miyaki M. p300 gene alterations in colorectal and gastric carcinomas. Oncogene. 1996 Apr 4;12(7):1565–1569. [PubMed] [Google Scholar]
  18. Papanicolaou D. A., Wilder R. L., Manolagas S. C., Chrousos G. P. The pathophysiologic roles of interleukin-6 in human disease. Ann Intern Med. 1998 Jan 15;128(2):127–137. doi: 10.7326/0003-4819-128-2-199801150-00009. [DOI] [PubMed] [Google Scholar]
  19. Parry G. C., Mackman N. Role of cyclic AMP response element-binding protein in cyclic AMP inhibition of NF-kappaB-mediated transcription. J Immunol. 1997 Dec 1;159(11):5450–5456. [PubMed] [Google Scholar]
  20. Plaisance S., Vanden Berghe W., Boone E., Fiers W., Haegeman G. Recombination signal sequence binding protein Jkappa is constitutively bound to the NF-kappaB site of the interleukin-6 promoter and acts as a negative regulatory factor. Mol Cell Biol. 1997 Jul;17(7):3733–3743. doi: 10.1128/mcb.17.7.3733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ramji D. P., Vitelli A., Tronche F., Cortese R., Ciliberto G. The two C/EBP isoforms, IL-6DBP/NF-IL6 and C/EBP delta/NF-IL6 beta, are induced by IL-6 to promote acute phase gene transcription via different mechanisms. Nucleic Acids Res. 1993 Jan 25;21(2):289–294. doi: 10.1093/nar/21.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rapp L., Chen J. J. The papillomavirus E6 proteins. Biochim Biophys Acta. 1998 Aug 19;1378(1):F1–19. doi: 10.1016/s0304-419x(98)00009-2. [DOI] [PubMed] [Google Scholar]
  23. Ray A., Sassone-Corsi P., Sehgal P. B. A multiple cytokine- and second messenger-responsive element in the enhancer of the human interleukin-6 gene: similarities with c-fos gene regulation. Mol Cell Biol. 1989 Dec;9(12):5537–5547. doi: 10.1128/mcb.9.12.5537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rola-Pleszczynski M., Stanková J. Leukotriene B4 enhances interleukin-6 (IL-6) production and IL-6 messenger RNA accumulation in human monocytes in vitro: transcriptional and posttranscriptional mechanisms. Blood. 1992 Aug 15;80(4):1004–1011. [PubMed] [Google Scholar]
  25. Schmitz M. L., Stelzer G., Altmann H., Meisterernst M., Baeuerle P. A. Interaction of the COOH-terminal transactivation domain of p65 NF-kappa B with TATA-binding protein, transcription factor IIB, and coactivators. J Biol Chem. 1995 Mar 31;270(13):7219–7226. doi: 10.1074/jbc.270.13.7219. [DOI] [PubMed] [Google Scholar]
  26. Tanabe O., Akira S., Kamiya T., Wong G. G., Hirano T., Kishimoto T. Genomic structure of the murine IL-6 gene. High degree conservation of potential regulatory sequences between mouse and human. J Immunol. 1988 Dec 1;141(11):3875–3881. [PubMed] [Google Scholar]
  27. Trecca D., Guerrini L., Fracchiolla N. S., Pomati M., Baldini L., Maiolo A. T., Neri A. Identification of a tumor-associated mutant form of the NF-kappaB RelA gene with reduced DNA-binding and transactivating activities. Oncogene. 1997 Feb 20;14(7):791–799. doi: 10.1038/sj.onc.1200895. [DOI] [PubMed] [Google Scholar]
  28. Vanden Berghe W., De Bosscher K., Boone E., Plaisance S., Haegeman G. The nuclear factor-kappaB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. J Biol Chem. 1999 Nov 5;274(45):32091–32098. doi: 10.1074/jbc.274.45.32091. [DOI] [PubMed] [Google Scholar]
  29. Vanden Berghe W., Plaisance S., Boone E., De Bosscher K., Schmitz M. L., Fiers W., Haegeman G. p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J Biol Chem. 1998 Feb 6;273(6):3285–3290. doi: 10.1074/jbc.273.6.3285. [DOI] [PubMed] [Google Scholar]
  30. Wang P., Wu P., Anthes J. C., Siegel M. I., Egan R. W., Billah M. M. Interleukin-10 inhibits interleukin-8 production in human neutrophils. Blood. 1994 May 1;83(9):2678–2683. [PubMed] [Google Scholar]
  31. Webster G. A., Perkins N. D. Transcriptional cross talk between NF-kappaB and p53. Mol Cell Biol. 1999 May;19(5):3485–3495. doi: 10.1128/mcb.19.5.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yang J. P., Hori M., Sanda T., Okamoto T. Identification of a novel inhibitor of nuclear factor-kappaB, RelA-associated inhibitor. J Biol Chem. 1999 May 28;274(22):15662–15670. doi: 10.1074/jbc.274.22.15662. [DOI] [PubMed] [Google Scholar]
  33. Zhong H., Voll R. E., Ghosh S. Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell. 1998 Apr;1(5):661–671. doi: 10.1016/s1097-2765(00)80066-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES