Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Aug 1;349(Pt 3):863–868. doi: 10.1042/bj3490863

Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer).

L M Field 1
PMCID: PMC1221215  PMID: 10903149

Abstract

Most populations of the aphid Myzus persicae have amplified genes (up to 80 copies) encoding the insecticide-detoxifying esterase E4. This paper reports the analysis of methylation of the E4 gene and its flanking DNA with the use of methylation-sensitive restriction enzymes, CpG profiling and bisulphite sequencing. In combination these show that E4 has 5-methylcytosine confined to CpG doublets, as previously shown for vertebrate genomes; this is the first such report for an insect gene. The methylation is present within the gene but absent from upstream regions, including the 5' CpG-rich region around the start of transcription, and from 3' flanking DNA. Methylated E4 genes are expressed; loss of the 5-methylcytosine is correlated with a loss of transcription, although this is not accompanied by a global loss of the 5-methylcytosine present in the aphid genome. These results suggest that the methylation of E4 has a positive role in expression, and call into question the widely held view that methylation in invertebrate genomes is confined to regions that do not contain genes and that methylation is always associated with gene silencing.

Full Text

The Full Text of this article is available as a PDF (184.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bird A. P. Gene number, noise reduction and biological complexity. Trends Genet. 1995 Mar;11(3):94–100. doi: 10.1016/S0168-9525(00)89009-5. [DOI] [PubMed] [Google Scholar]
  2. Bird A. Does DNA methylation control transposition of selfish elements in the germline? Trends Genet. 1997 Dec;13(12):469–472. doi: 10.1016/s0168-9525(97)01310-3. [DOI] [PubMed] [Google Scholar]
  3. Colot V., Rossignol J. L. Eukaryotic DNA methylation as an evolutionary device. Bioessays. 1999 May;21(5):402–411. doi: 10.1002/(SICI)1521-1878(199905)21:5<402::AID-BIES7>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  4. Field L. M., Blackman R. L., Tyler-Smith C., Devonshire A. L. Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). Biochem J. 1999 May 1;339(Pt 3):737–742. [PMC free article] [PubMed] [Google Scholar]
  5. Field L. M., Devonshire A. L. Evidence that the E4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer) are part of a gene family. Biochem J. 1998 Feb 15;330(Pt 1):169–173. doi: 10.1042/bj3300169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Field L. M., Javed N., Stribley M. F., Devonshire A. L. The peach-potato aphid Myzus persicae and the tobacco aphid Myzus nicotianae have the same esterase-based mechanisms of insecticide resistance. Insect Mol Biol. 1994 Aug;3(3):143–148. doi: 10.1111/j.1365-2583.1994.tb00161.x. [DOI] [PubMed] [Google Scholar]
  7. Field L. M., Williamson M. S., Moores G. D., Devonshire A. L. Cloning and analysis of the esterase genes conferring insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer). Biochem J. 1993 Sep 1;294(Pt 2):569–574. doi: 10.1042/bj2940569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frommer M., McDonald L. E., Millar D. S., Collis C. M., Watt F., Grigg G. W., Molloy P. L., Paul C. L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1827–1831. doi: 10.1073/pnas.89.5.1827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hick C. A., Field L. M., Devonshire A. L. Changes in the methylation of amplified esterase DNA during loss and reselection of insecticide resistance in peach-potato aphids, Myzus persicae. Insect Biochem Mol Biol. 1996 Jan;26(1):41–47. doi: 10.1016/0965-1748(95)00059-3. [DOI] [PubMed] [Google Scholar]
  10. Jablanka E., Regev A. Gene number, methylation and biological complexity. Trends Genet. 1995 Oct;11(10):383–384. doi: 10.1016/s0168-9525(00)89117-9. [DOI] [PubMed] [Google Scholar]
  11. Jones P. A. The DNA methylation paradox. Trends Genet. 1999 Jan;15(1):34–37. doi: 10.1016/s0168-9525(98)01636-9. [DOI] [PubMed] [Google Scholar]
  12. Li E. The mojo of methylation. Nat Genet. 1999 Sep;23(1):5–6. doi: 10.1038/12595. [DOI] [PubMed] [Google Scholar]
  13. Martienssen R. Transposons, DNA methylation and gene control. Trends Genet. 1998 Jul;14(7):263–264. doi: 10.1016/s0168-9525(98)01518-2. [DOI] [PubMed] [Google Scholar]
  14. Nan X., Campoy F. J., Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell. 1997 Feb 21;88(4):471–481. doi: 10.1016/s0092-8674(00)81887-5. [DOI] [PubMed] [Google Scholar]
  15. Rein T., DePamphilis M. L., Zorbas H. Identifying 5-methylcytosine and related modifications in DNA genomes. Nucleic Acids Res. 1998 May 15;26(10):2255–2264. doi: 10.1093/nar/26.10.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Selker E. U. Gene silencing: repeats that count. Cell. 1999 Apr 16;97(2):157–160. doi: 10.1016/s0092-8674(00)80725-4. [DOI] [PubMed] [Google Scholar]
  17. Shimizu T. S., Takahashi K., Tomita M. CpG distribution patterns in methylated and non-methylated species. Gene. 1997 Dec 31;205(1-2):103–107. doi: 10.1016/s0378-1119(97)00542-8. [DOI] [PubMed] [Google Scholar]
  18. Siegfried Z., Eden S., Mendelsohn M., Feng X., Tsuberi B. Z., Cedar H. DNA methylation represses transcription in vivo. Nat Genet. 1999 Jun;22(2):203–206. doi: 10.1038/9727. [DOI] [PubMed] [Google Scholar]
  19. Simmen M. W., Leitgeb S., Charlton J., Jones S. J., Harris B. R., Clark V. H., Bird A. Nonmethylated transposable elements and methylated genes in a chordate genome. Science. 1999 Feb 19;283(5405):1164–1167. doi: 10.1126/science.283.5405.1164. [DOI] [PubMed] [Google Scholar]
  20. Tweedie S., Charlton J., Clark V., Bird A. Methylation of genomes and genes at the invertebrate-vertebrate boundary. Mol Cell Biol. 1997 Mar;17(3):1469–1475. doi: 10.1128/mcb.17.3.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tweedie S., Ng H. H., Barlow A. L., Turner B. M., Hendrich B., Bird A. Vestiges of a DNA methylation system in Drosophila melanogaster? Nat Genet. 1999 Dec;23(4):389–390. doi: 10.1038/70490. [DOI] [PubMed] [Google Scholar]
  22. Walsh C. P., Bestor T. H. Cytosine methylation and mammalian development. Genes Dev. 1999 Jan 1;13(1):26–34. doi: 10.1101/gad.13.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wolffe A. P., Jones P. L., Wade P. A. DNA demethylation. Proc Natl Acad Sci U S A. 1999 May 25;96(11):5894–5896. doi: 10.1073/pnas.96.11.5894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yoder J. A., Walsh C. P., Bestor T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997 Aug;13(8):335–340. doi: 10.1016/s0168-9525(97)01181-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES