Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Aug 15;350(Pt 1):41–51.

Band 3 mutations, renal tubular acidosis and South-East Asian ovalocytosis in Malaysia and Papua New Guinea: loss of up to 95% band 3 transport in red cells.

L J Bruce 1, O Wrong 1, A M Toye 1, M T Young 1, G Ogle 1, Z Ismail 1, A K Sinha 1, P McMaster 1, I Hwaihwanje 1, G B Nash 1, S Hart 1, E Lavu 1, R Palmer 1, A Othman 1, R J Unwin 1, M J Tanner 1
PMCID: PMC1221222  PMID: 10926824

Abstract

We describe three mutations of the red-cell anion exchangerband 3 (AE1, SLC4A1) gene associated with distalrenal tubular acidosis (dRTA) in families from Malaysia and Papua NewGuinea: Gly(701)-->Asp (G701D), Ala(858)-->Asp(A858D) and deletion of Val(850) (DeltaV850). The mutationsA858D and DeltaV850 are novel; all three mutations seem to berestricted to South-East Asian populations. South-East Asianovalocytosis (SAO), resulting from the band 3 deletion of residues400-408, occurred in many of the families but did not itselfresult in dRTA. Compound heterozygotes of each of the dRTA mutationswith SAO all had dRTA, evidence of haemolytic anaemia and abnormal red-cell properties. The A858D mutation showed dominant inheritance and therecessive DeltaV850 and G701D mutations showed a pseudo-dominantphenotype when the transport-inactive SAO allele was also present. Red-cell and Xenopus oocyte expression studies showed that theDeltaV850 and A858D mutant proteins have greatly decreased aniontransport when present as compound heterozygotes (DeltaV850/A858D,DeltaV850/SAO or A858D/SAO). Red cells with A858D/SAO had only 3% ofthe SO(4)(2-) efflux of normal cells, thelowest anion transport activity so far reported for human red cells.The results suggest dRTA might arise by a different mechanism for eachmutation. We confirm that the G701D mutant protein has an absoluterequirement for glycophorin A for movement to the cell surface. Wesuggest that the dominant A858D mutant protein is possibly mis-targetedto an inappropriate plasma membrane domain in the renal tubular cell,and that the recessive DeltaV850 mutation might give dRTA because ofits decreased anion transport activity.

Full Text

The Full Text of this article is available as a PDF (235.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen S. J., O'Donnell A., Alexander N. D., Mgone C. S., Peto T. E., Clegg J. B., Alpers M. P., Weatherall D. J. Prevention of cerebral malaria in children in Papua New Guinea by southeast Asian ovalocytosis band 3. Am J Trop Med Hyg. 1999 Jun;60(6):1056–1060. doi: 10.4269/ajtmh.1999.60.1056. [DOI] [PubMed] [Google Scholar]
  2. Alper S. L., Natale J., Gluck S., Lodish H. F., Brown D. Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5429–5433. doi: 10.1073/pnas.86.14.5429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baehner R. L., Gilchrist G. S., Anderson E. J. Hereditary elliptocytosis and primary renal tubular acidosis in a single family. Am J Dis Child. 1968 Apr;115(4):414–419. doi: 10.1001/archpedi.1968.02100010416002. [DOI] [PubMed] [Google Scholar]
  4. Batlle D. C. Segmental characterization of defects in collecting tubule acidification. Kidney Int. 1986 Oct;30(4):546–554. doi: 10.1038/ki.1986.220. [DOI] [PubMed] [Google Scholar]
  5. Bruce L. J., Cope D. L., Jones G. K., Schofield A. E., Burley M., Povey S., Unwin R. J., Wrong O., Tanner M. J. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest. 1997 Oct 1;100(7):1693–1707. doi: 10.1172/JCI119694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chafe L., Gault M. H. First morning urine pH in the diagnosis of renal tubular acidosis with nephrolithiasis. Clin Nephrol. 1994 Mar;41(3):159–162. [PubMed] [Google Scholar]
  7. Funder J., Wieth J. O. Chloride transport in human erythrocytes and ghosts: a quantitative comparison. J Physiol. 1976 Nov;262(3):679–698. doi: 10.1113/jphysiol.1976.sp011615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Genton B., al-Yaman F., Mgone C. S., Alexander N., Paniu M. M., Alpers M. P., Mokela D. Ovalocytosis and cerebral malaria. Nature. 1995 Dec 7;378(6557):564–565. doi: 10.1038/378564a0. [DOI] [PubMed] [Google Scholar]
  9. Groves J. D., Ring S. M., Schofield A. E., Tanner M. J. The expression of the abnormal human red cell anion transporter from South-East Asian ovalocytes (band 3 SAO) in Xenopus oocytes. FEBS Lett. 1993 Sep 13;330(2):186–190. doi: 10.1016/0014-5793(93)80270-5. [DOI] [PubMed] [Google Scholar]
  10. Groves J. D., Tanner M. J. Glycophorin A facilitates the expression of human band 3-mediated anion transport in Xenopus oocytes. J Biol Chem. 1992 Nov 5;267(31):22163–22170. [PubMed] [Google Scholar]
  11. Gunn R. B., Fröhlich O. Methods and analysis of erythrocyte anion fluxes. Methods Enzymol. 1989;173:54–80. doi: 10.1016/s0076-6879(89)73005-6. [DOI] [PubMed] [Google Scholar]
  12. Jarolim P., Palek J., Amato D., Hassan K., Sapak P., Nurse G. T., Rubin H. L., Zhai S., Sahr K. E., Liu S. C. Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11022–11026. doi: 10.1073/pnas.88.24.11022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jarolim P., Shayakul C., Prabakaran D., Jiang L., Stuart-Tilley A., Rubin H. L., Simova S., Zavadil J., Herrin J. T., Brouillette J. Autosomal dominant distal renal tubular acidosis is associated in three families with heterozygosity for the R589H mutation in the AE1 (band 3) Cl-/HCO3- exchanger. J Biol Chem. 1998 Mar 13;273(11):6380–6388. doi: 10.1074/jbc.273.11.6380. [DOI] [PubMed] [Google Scholar]
  14. Jennings M. L., Gosselink P. G. Anion exchange protein in Southeast Asian ovalocytes: heterodimer formation between normal and variant subunits. Biochemistry. 1995 Mar 21;34(11):3588–3595. doi: 10.1021/bi00011a013. [DOI] [PubMed] [Google Scholar]
  15. Kaitwatcharachai C., Vasuvattakul S., Yenchitsomanus P. t., Thuwajit P., Malasit P., Chuawatana D., Mingkum S., Halperin M. L., Wilairat P., Nimmannit S. Distal renal tubular acidosis and high urine carbon dioxide tension in a patient with southeast Asian ovalocytosis. Am J Kidney Dis. 1999 Jun;33(6):1147–1152. doi: 10.1016/s0272-6386(99)70154-x. [DOI] [PubMed] [Google Scholar]
  16. Karet F. E., Finberg K. E., Nelson R. D., Nayir A., Mocan H., Sanjad S. A., Rodriguez-Soriano J., Santos F., Cremers C. W., Di Pietro A. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet. 1999 Jan;21(1):84–90. doi: 10.1038/5022. [DOI] [PubMed] [Google Scholar]
  17. Karet F. E., Gainza F. J., Györy A. Z., Unwin R. J., Wrong O., Tanner M. J., Nayir A., Alpay H., Santos F., Hulton S. A. Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6337–6342. doi: 10.1073/pnas.95.11.6337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kollert-Jöns A., Wagner S., Hübner S., Appelhans H., Drenckhahn D. Anion exchanger 1 in human kidney and oncocytoma differs from erythroid AE1 in its NH2 terminus. Am J Physiol. 1993 Dec;265(6 Pt 2):F813–F821. doi: 10.1152/ajprenal.1993.265.6.F813. [DOI] [PubMed] [Google Scholar]
  19. Luchi R. J., Gruber J. W. Unusually large digitalis requirements. A study of altered digoxin metabolism. Am J Med. 1968 Aug;45(2):322–328. doi: 10.1016/0002-9343(68)90049-1. [DOI] [PubMed] [Google Scholar]
  20. Miraglia del Giudice E., Vallier A., Maillet P., Perrotta S., Cutillo S., Iolascon A., Tanner M. J., Delaunay J., Alloisio N. Novel band 3 variants (bands 3 Foggia, Napoli I and Napoli II) associated with hereditary spherocytosis and band 3 deficiency: status of the D38A polymorphism within the EPB3 locus. Br J Haematol. 1997 Jan;96(1):70–76. doi: 10.1046/j.1365-2141.1997.8732504.x. [DOI] [PubMed] [Google Scholar]
  21. Mohandas N., Lie-Injo L. E., Friedman M., Mak J. W. Rigid membranes of Malayan ovalocytes: a likely genetic barrier against malaria. Blood. 1984 Jun;63(6):1385–1392. [PubMed] [Google Scholar]
  22. Mohandas N., Winardi R., Knowles D., Leung A., Parra M., George E., Conboy J., Chasis J. Molecular basis for membrane rigidity of hereditary ovalocytosis. A novel mechanism involving the cytoplasmic domain of band 3. J Clin Invest. 1992 Feb;89(2):686–692. doi: 10.1172/JCI115636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moriyama R., Ideguchi H., Lombardo C. R., Van Dort H. M., Low P. S. Structural and functional characterization of band 3 from Southeast Asian ovalocytes. J Biol Chem. 1992 Dec 25;267(36):25792–25797. [PubMed] [Google Scholar]
  24. Mueller T. J., Morrison M. Detection of a variant of protein 3, the major transmembrane protein of the human erythrocyte. J Biol Chem. 1977 Oct 10;252(19):6573–6576. [PubMed] [Google Scholar]
  25. Nash G. B., Wyard S. J. Erythrocyte membrane elasticity during in vivo ageing. Biochim Biophys Acta. 1981 May 6;643(2):269–275. doi: 10.1016/0005-2736(81)90072-9. [DOI] [PubMed] [Google Scholar]
  26. Ranney H. M., Rosenberg G. H., Morrison M., Mueller T. J. Frequencies of Band 3 variants of human red cell membranes in some different populations. Br J Haematol. 1990 Jun;75(2):262–267. doi: 10.1111/j.1365-2141.1990.tb02660.x. [DOI] [PubMed] [Google Scholar]
  27. Sarabia V. E., Casey J. R., Reithmeier R. A. Molecular characterization of the band 3 protein from Southeast Asian ovalocytes. J Biol Chem. 1993 May 15;268(14):10676–10680. [PubMed] [Google Scholar]
  28. Saul A., Lamont G., Sawyer W. H., Kidson C. Decreased membrane deformability in Melanesian ovalocytes from Papua New Guinea. J Cell Biol. 1984 Apr;98(4):1348–1354. doi: 10.1083/jcb.98.4.1348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schofield A. E., Martin P. G., Spillett D., Tanner M. J. The structure of the human red blood cell anion exchanger (EPB3, AE1, band 3) gene. Blood. 1994 Sep 15;84(6):2000–2012. [PubMed] [Google Scholar]
  30. Schofield A. E., Reardon D. M., Tanner M. J. Defective anion transport activity of the abnormal band 3 in hereditary ovalocytic red blood cells. Nature. 1992 Feb 27;355(6363):836–838. doi: 10.1038/355836a0. [DOI] [PubMed] [Google Scholar]
  31. Schofield A. E., Tanner M. J., Pinder J. C., Clough B., Bayley P. M., Nash G. B., Dluzewski A. R., Reardon D. M., Cox T. M., Wilson R. J. Basis of unique red cell membrane properties in hereditary ovalocytosis. J Mol Biol. 1992 Feb 20;223(4):949–958. doi: 10.1016/0022-2836(92)90254-h. [DOI] [PubMed] [Google Scholar]
  32. Serjeantson S., Bryson K., Amato D., Babona D. Malaria and hereditary ovalocytosis. Hum Genet. 1977 Jun 30;37(2):161–167. doi: 10.1007/BF00393579. [DOI] [PubMed] [Google Scholar]
  33. Smulders Y. M., Frissen P. H., Slaats E. H., Silberbusch J. Renal tubular acidosis. Pathophysiology and diagnosis. Arch Intern Med. 1996 Aug 12;156(15):1629–1636. [PubMed] [Google Scholar]
  34. Spring F. A., Bruce L. J., Anstee D. J., Tanner M. J. A red cell band 3 variant with altered stilbene disulphonate binding is associated with the Diego (Dia) blood group antigen. Biochem J. 1992 Dec 15;288(Pt 3):713–716. doi: 10.1042/bj2880713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tanphaichitr V. S., Sumboonnanonda A., Ideguchi H., Shayakul C., Brugnara C., Takao M., Veerakul G., Alper S. L. Novel AE1 mutations in recessive distal renal tubular acidosis. Loss-of-function is rescued by glycophorin A. J Clin Invest. 1998 Dec 15;102(12):2173–2179. doi: 10.1172/JCI4836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Thong M. K., Tan A. A., Lin H. P. Distal renal tubular acidosis and hereditary elliptocytosis in a single family. Singapore Med J. 1997 Sep;38(9):388–390. [PubMed] [Google Scholar]
  37. Unravelling of the molecular mechanisms of kidney stones. Report of a Meeting of Physicians and Scientists. Lancet. 1996 Dec 7;348(9041):1561–1565. [PubMed] [Google Scholar]
  38. Vasuvattakul S., Yenchitsomanus P. T., Vachuanichsanong P., Thuwajit P., Kaitwatcharachai C., Laosombat V., Malasit P., Wilairat P., Nimmannit S. Autosomal recessive distal renal tubular acidosis associated with Southeast Asian ovalocytosis. Kidney Int. 1999 Nov;56(5):1674–1682. doi: 10.1046/j.1523-1755.1999.00756.x. [DOI] [PubMed] [Google Scholar]
  39. WRONG O., DAVIES H. E. The excretion of acid in renal disease. Q J Med. 1959 Apr;28(110):259–313. [PubMed] [Google Scholar]
  40. Wainwright S. D., Tanner M. J., Martin G. E., Yendle J. E., Holmes C. Monoclonal antibodies to the membrane domain of the human erythrocyte anion transport protein. Localization of the C-terminus of the protein to the cytoplasmic side of the red cell membrane and distribution of the protein in some human tissues. Biochem J. 1989 Feb 15;258(1):211–220. doi: 10.1042/bj2580211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wrong O. M., Feest T. G., MacIver A. G. Immune-related potassium-losing interstitial nephritis: a comparison with distal renal tubular acidosis. Q J Med. 1993 Aug;86(8):513–534. doi: 10.1093/qjmed/86.8.513. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES