Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Aug 15;350(Pt 1):61–67.

Malonyl-CoA metabolism in cardiac myocytes.

C Hamilton 1, E D Saggerson 1
PMCID: PMC1221224  PMID: 10926826

Abstract

(1) Malonyl-CoA is thought to play a signalling role in fuel-selection in cardiac muscle, but the rate at which the concentration of this potential signal can be changed has not previously been investigated. (2) Rapid changes in cellular malonyl-CoA could be observed when rat cardiac myocytes were incubated in glucose-free medium followed by re-addition of 5 mM glucose, or when cells were transferred from a medium containing glucose to a glucose-free medium. On addition of glucose, malonyl-CoA increased by 62% to a new steady-state level, at a rate of at least 0.4 nmol/g dry wt. per min. The half-time of this change was less than 3 min. After removal of glucose the malonyl-CoA content was estimated to decline by 0.43-0.55 nmol/g dry wt. per min. (3) Malonyl-CoA decarboxylase (MDC) is a possible route for disposal of malonyl-CoA. No evidence was obtained for a cytosolic activity of MDC in rat heart where most of the activity was found in the mitochondrial fraction. MDC in the mitochondrial matrix was not accessible to extramitochondrial malonyl-CoA. However, approx. 16% of the MDC activity in mitochondria was overt, in a manner that could not be explained by mitochondrial leakage. It is suggested that this, as yet uncharacterized, overt MDC activity could provide a route for disposal of cytosolic malonyl-CoA in the heart. (4) No activity of the condensing enzyme for the fatty acid elongation system could be detected in any heart subcellular fraction using two assay systems. A previous suggestion [Awan and Saggerson (1993) Biochem. J. 295, 61-66] that this could provide a route for disposal of cytosolic malonyl-CoA in heart should therefore be abandoned.

Full Text

The Full Text of this article is available as a PDF (117.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu-Elheiga L., Almarza-Ortega D. B., Baldini A., Wakil S. J. Human acetyl-CoA carboxylase 2. Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. J Biol Chem. 1997 Apr 18;272(16):10669–10677. doi: 10.1074/jbc.272.16.10669. [DOI] [PubMed] [Google Scholar]
  2. Alam N., Saggerson E. D. Malonyl-CoA and the regulation of fatty acid oxidation in soleus muscle. Biochem J. 1998 Aug 15;334(Pt 1):233–241. doi: 10.1042/bj3340233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allred J. B., Guy D. G. Determination of coenzyme A and acetyl CoA in tissue extracts. Anal Biochem. 1969 May;29(2):293–299. doi: 10.1016/0003-2697(69)90312-1. [DOI] [PubMed] [Google Scholar]
  4. Awan M. M., Saggerson E. D. Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Biochem J. 1993 Oct 1;295(Pt 1):61–66. doi: 10.1042/bj2950061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cederblad G., Lindstedt S. A method for the determination of carnitine in the picomole range. Clin Chim Acta. 1972 Mar;37:235–243. doi: 10.1016/0009-8981(72)90438-x. [DOI] [PubMed] [Google Scholar]
  6. Cinti D. L., Cook L., Nagi M. N., Suneja S. K. The fatty acid chain elongation system of mammalian endoplasmic reticulum. Prog Lipid Res. 1992;31(1):1–51. doi: 10.1016/0163-7827(92)90014-a. [DOI] [PubMed] [Google Scholar]
  7. Courchesne-Smith C., Jang S. H., Shi Q., DeWille J., Sasaki G., Kolattukudy P. E. Cytoplasmic accumulation of a normally mitochondrial malonyl-CoA decarboxylase by the use of an alternate transcription start site. Arch Biochem Biophys. 1992 Nov 1;298(2):576–586. doi: 10.1016/0003-9861(92)90452-3. [DOI] [PubMed] [Google Scholar]
  8. Dyck J. R., Barr A. J., Barr R. L., Kolattukudy P. E., Lopaschuk G. D. Characterization of cardiac malonyl-CoA decarboxylase and its putative role in regulating fatty acid oxidation. Am J Physiol. 1998 Dec;275(6 Pt 2):H2122–H2129. doi: 10.1152/ajpheart.1998.275.6.H2122. [DOI] [PubMed] [Google Scholar]
  9. Edwards M. R., Bird M. I., Saggerson E. D. Effects of DL-2-bromopalmitoyl-CoA and bromoacetyl-CoA in rat liver and heart mitochondria. Inhibition of carnitine palmitoyltransferase and displacement of [14C]malonyl-CoA from mitochondrial binding sites. Biochem J. 1985 Aug 15;230(1):169–179. doi: 10.1042/bj2300169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fuller S. J., Gaitanaki C. J., Sugden P. H. Effects of catecholamines on protein synthesis in cardiac myocytes and perfused hearts isolated from adult rats. Stimulation of translation is mediated through the alpha 1-adrenoceptor. Biochem J. 1990 Mar 15;266(3):727–736. doi: 10.1042/bj2660727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ha J., Lee J. K., Kim K. S., Witters L. A., Kim K. H. Cloning of human acetyl-CoA carboxylase-beta and its unique features. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11466–11470. doi: 10.1073/pnas.93.21.11466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hagve T. A., Sprecher H. Metabolism of long-chain polyunsaturated fatty acids in isolated cardiac myocytes. Biochim Biophys Acta. 1989 Feb 20;1001(3):338–344. doi: 10.1016/0005-2760(89)90118-5. [DOI] [PubMed] [Google Scholar]
  13. Kim Y. S., Kolattukudy P. E. Malonyl-CoA decarboxylase from the uropygial gland of waterfowl: purification, properties, immunological comparison, and role in regulating the synthesis of multimethyl-branched fatty acids. Arch Biochem Biophys. 1978 Oct;190(2):585–597. doi: 10.1016/0003-9861(78)90314-4. [DOI] [PubMed] [Google Scholar]
  14. Kim Y. S., Kolattukudy P. E. Purification and properties of malonyl-CoA decarboxylase from rat liver mitochondria and its immunological comparison with the enzymes from rat brain, heart, and mammary gland. Arch Biochem Biophys. 1978 Sep;190(1):234–246. doi: 10.1016/0003-9861(78)90273-4. [DOI] [PubMed] [Google Scholar]
  15. Kudo N., Barr A. J., Barr R. L., Desai S., Lopaschuk G. D. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem. 1995 Jul 21;270(29):17513–17520. doi: 10.1074/jbc.270.29.17513. [DOI] [PubMed] [Google Scholar]
  16. Landriscina C., Gnoni G. V., Quagliariello E. Properties of malonyl-CoA decarboxylase and its relation with malonyl-CoA incorporation into fatty acids by rat liver mitochondria. Eur J Biochem. 1971 Apr 30;19(4):573–580. doi: 10.1111/j.1432-1033.1971.tb01351.x. [DOI] [PubMed] [Google Scholar]
  17. Lloyd A. C., Carpenter C. A., Saggerson E. D. Intertissue differences in the hysteretic behaviour of carnitine palmitoyltransferase in the presence of malonyl-CoA. Biochem J. 1986 Jul 1;237(1):289–291. doi: 10.1042/bj2370289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lopaschuk G. D., Witters L. A., Itoi T., Barr R., Barr A. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. J Biol Chem. 1994 Oct 14;269(41):25871–25878. [PubMed] [Google Scholar]
  19. McGarry J. D., Brown N. F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997 Feb 15;244(1):1–14. doi: 10.1111/j.1432-1033.1997.00001.x. [DOI] [PubMed] [Google Scholar]
  20. McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
  21. McGarry J. D., Mills S. E., Long C. S., Foster D. W. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J. 1983 Jul 15;214(1):21–28. doi: 10.1042/bj2140021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McGarry J. D., Stark M. J., Foster D. W. Hepatic malonyl-CoA levels of fed, fasted and diabetic rats as measured using a simple radioisotopic assay. J Biol Chem. 1978 Nov 25;253(22):8291–8293. [PubMed] [Google Scholar]
  23. Mills S. E., Foster D. W., McGarry J. D. Interaction of malonyl-CoA and related compounds with mitochondria from different rat tissues. Relationship between ligand binding and inhibition of carnitine palmitoyltransferase I. Biochem J. 1983 Jul 15;214(1):83–91. doi: 10.1042/bj2140083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nagi M. N., Cook L., Suneja S. K., Osei P., Cinti D. L. Spectrophotometric assay for the condensing enzyme activity of the microsomal fatty acid chain elongation system. Anal Biochem. 1989 Jun;179(2):251–261. doi: 10.1016/0003-2697(89)90124-3. [DOI] [PubMed] [Google Scholar]
  25. Prasad M. R., Cinti D. L. Effect of the peroxisomal proliferator di(2-ethylhexyl)phthalate on component reactions of the rat hepatic microsomal fatty acid chain elongation system and on other hepatic lipogenic enzymes. Arch Biochem Biophys. 1986 Aug 1;248(2):479–488. doi: 10.1016/0003-9861(86)90501-1. [DOI] [PubMed] [Google Scholar]
  26. Saddik M., Gamble J., Witters L. A., Lopaschuk G. D. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem. 1993 Dec 5;268(34):25836–25845. [PubMed] [Google Scholar]
  27. Saggerson D. Carnitine palmitoyltransferase in extrahepatic tissues. Biochem Soc Trans. 1986 Aug;14(4):679–681. doi: 10.1042/bst0140679. [DOI] [PubMed] [Google Scholar]
  28. Saggerson E. D., Carpenter C. A. Carnitine palmitoyltransferase and carnitine octanoyltransferase activities in liver, kidney cortex, adipocyte, lactating mammary gland, skeletal muscle and heart. FEBS Lett. 1981 Jul 6;129(2):229–232. doi: 10.1016/0014-5793(81)80171-8. [DOI] [PubMed] [Google Scholar]
  29. Saggerson E. D. Lipogenesis in rat and guinea-pig isolated epididymal fat-cells. Biochem J. 1974 May;140(2):211–224. doi: 10.1042/bj1400211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scholte H. R. The intracellular and intramitochondrial distribution of malonyl-CoA decarboxylase and propionyl-CoA carboxylase in rat liver. Biochim Biophys Acta. 1969 Mar 18;178(1):137–144. doi: 10.1016/0005-2744(69)90140-5. [DOI] [PubMed] [Google Scholar]
  31. Shepherd D., Garland P. B. The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J. 1969 Sep;114(3):597–610. doi: 10.1042/bj1140597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Svoronos S., Kumar S. Decarboxylation of malonyl-CoA by lactating bovine mammary fatty acid synthase. Comp Biochem Physiol B. 1988;90(1):179–185. doi: 10.1016/0305-0491(88)90058-2. [DOI] [PubMed] [Google Scholar]
  33. Swanton E. M., Saggerson E. D. Effects of adrenaline on triacylglycerol synthesis and turnover in ventricular myocytes from adult rats. Biochem J. 1997 Dec 15;328(Pt 3):913–922. doi: 10.1042/bj3280913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Trumble G. E., Smith M. A., Winder W. W. Purification and characterization of rat skeletal muscle acetyl-CoA carboxylase. Eur J Biochem. 1995 Jul 1;231(1):192–198. doi: 10.1111/j.1432-1033.1995.tb20686.x. [DOI] [PubMed] [Google Scholar]
  35. Widmer J., Fassihi K. S., Schlichter S. C., Wheeler K. S., Crute B. E., King N., Nutile-McMenemy N., Noll W. W., Daniel S., Ha J. Identification of a second human acetyl-CoA carboxylase gene. Biochem J. 1996 Jun 15;316(Pt 3):915–922. doi: 10.1042/bj3160915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wientzek M., Katz S. Isolation and characterization of purified sarcoplasmic reticulum membranes from isolated adult rat ventricular myocytes. J Mol Cell Cardiol. 1991 Oct;23(10):1149–1163. doi: 10.1016/0022-2828(91)90204-y. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES