Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Aug 15;350(Pt 1):75–80.

Characterization of derivatives of the high-molecular-mass penicillin-binding protein (PBP) 1 of Mycobacterium leprae.

S Mahapatra 1, S Bhakta 1, J Ahamed 1, J Basu 1
PMCID: PMC1221226  PMID: 10926828

Abstract

Mycobacterium leprae has two high-molecular-mass multimodular penicillin-binding proteins (PBPs) of class A, termed PBP1 and PBP1* [Lepage, Dubois, Ghosh, Joris, Mahapatra, Kundu, Basu, Chakrabarti, Cole, Nguyen-Disteche and Ghuysen (1997) J. Bacteriol. 179, 4627-4630]. PBP1-Xaa-beta-lactamase fusions generated periplasmic beta-lactamase activity when Xaa (the amino acid of PBP1 at the fusion junction) was residue 314, 363, 407, 450 or 480. Truncation of the N-terminal part of the protein up to residue Leu-147 generated a penicillin-binding polypeptide which could still associate with the plasma membrane, whereas [DeltaM1-R314]PBP1 (PBP1 lacking residues Met-1 to Arg-314) failed to associate with the membrane, suggesting that the region between residues Leu-147 and Arg-314 harbours an additional plasma membrane association site for PBP1. Truncation of the C-terminus up to 42 residues downstream of the KTG (Lys-Thr-Gly) motif also generated a polypeptide that retained penicillin-binding activity. [DeltaM1-R314]PBP1 could be extracted from inclusion bodies and refolded under appropriate conditions to give a form capable of binding penicillin with the same efficiency as full-length PBP1. This is, to the best of our knowledge, the first report of a soluble derivative of a penicillin-resistant high-molecular-mass PBP of class A that is capable of binding penicillin. A chimaeric PBP in which the penicillin-binding (PB) module of PBP1 was fused at its N-terminal end with the non-penicillin-binding (n-PB) module of PBP1* retained pencillin-binding activity similar to that of PBP1, corroborating the finding that the n-PB module of PBP1 is dispensable for its penicillin-binding activity.

Full Text

The Full Text of this article is available as a PDF (137.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basu J., Mahapatra S., Kundu M., Mukhopadhyay S., Nguyen-Distèche M., Dubois P., Joris B., Van Beeumen J., Cole S. T., Chakrabarti P. Identification and overexpression in Escherichia coli of a Mycobacterium leprae gene, pon1, encoding a high-molecular-mass class A penicillin-binding protein, PBP1. J Bacteriol. 1996 Mar;178(6):1707–1711. doi: 10.1128/jb.178.6.1707-1711.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowler L. D., Spratt B. G. Membrane topology of penicillin-binding protein 3 of Escherichia coli. Mol Microbiol. 1989 Sep;3(9):1277–1286. doi: 10.1111/j.1365-2958.1989.tb00278.x. [DOI] [PubMed] [Google Scholar]
  3. Broome-Smith J. K., Spratt B. G. A vector for the construction of translational fusions to TEM beta-lactamase and the analysis of protein export signals and membrane protein topology. Gene. 1986;49(3):341–349. doi: 10.1016/0378-1119(86)90370-7. [DOI] [PubMed] [Google Scholar]
  4. Broome-Smith J. K., Tadayyon M., Zhang Y. Beta-lactamase as a probe of membrane protein assembly and protein export. Mol Microbiol. 1990 Oct;4(10):1637–1644. doi: 10.1111/j.1365-2958.1990.tb00540.x. [DOI] [PubMed] [Google Scholar]
  5. Ghuysen J. M. Molecular structures of penicillin-binding proteins and beta-lactamases. Trends Microbiol. 1994 Oct;2(10):372–380. doi: 10.1016/0966-842x(94)90614-9. [DOI] [PubMed] [Google Scholar]
  6. Goffin C., Ghuysen J. M. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev. 1998 Dec;62(4):1079–1093. doi: 10.1128/mmbr.62.4.1079-1093.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Granier B., Jamin M., Adam M., Galleni M., Lakaye B., Zorzi W., Grandchamps J., Wilkin J. M., Fraipont C., Joris B. Serine-type D-Ala-D-Ala peptidases and penicillin-binding proteins. Methods Enzymol. 1994;244:249–266. doi: 10.1016/0076-6879(94)44021-2. [DOI] [PubMed] [Google Scholar]
  8. Ishino F., Mitsui K., Tamaki S., Matsuhashi M. Dual enzyme activities of cell wall peptidoglycan synthesis, peptidoglycan transglycosylase and penicillin-sensitive transpeptidase, in purified preparations of Escherichia coli penicillin-binding protein 1A. Biochem Biophys Res Commun. 1980 Nov 17;97(1):287–293. doi: 10.1016/s0006-291x(80)80166-5. [DOI] [PubMed] [Google Scholar]
  9. Lefèvre F., Rémy M. H., Masson J. M. Topographical and functional investigation of Escherichia coli penicillin-binding protein 1b by alanine stretch scanning mutagenesis. J Bacteriol. 1997 Aug;179(15):4761–4767. doi: 10.1128/jb.179.15.4761-4767.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lepage S., Dubois P., Ghosh T. K., Joris B., Mahapatra S., Kundu M., Basu J., Chakrabarti P., Cole S. T., Nguyen-Distèche M. Dual multimodular class A penicillin-binding proteins in Mycobacterium leprae. J Bacteriol. 1997 Jul;179(14):4627–4630. doi: 10.1128/jb.179.14.4627-4630.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Massova I., Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother. 1998 Jan;42(1):1–17. doi: 10.1128/aac.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mollerach M. E., Partoune P., Coyette J., Ghuysen J. M. Importance of the E-46-D-160 polypeptide segment of the non-penicillin-binding module for the folding of the low-affinity, multimodular class B penicillin-binding protein 5 of Enterococus hirae. J Bacteriol. 1996 Mar;178(6):1774–1775. doi: 10.1128/jb.178.6.1774-1775.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nakagawa J., Tamaki S., Tomioka S., Matsuhashi M. Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1Bs of Escherichia coli with activities of transglycosylase and transpeptidase. J Biol Chem. 1984 Nov 25;259(22):13937–13946. [PubMed] [Google Scholar]
  14. Nicholas R. A., Lamson D. R., Schultz D. E. Penicillin-binding protein 1B from Escherichia coli contains a membrane association site in addition to its transmembrane anchor. J Biol Chem. 1993 Mar 15;268(8):5632–5641. [PubMed] [Google Scholar]
  15. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972 Apr;1(4):283–288. doi: 10.1128/aac.1.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rudolph R., Lilie H. In vitro folding of inclusion body proteins. FASEB J. 1996 Jan;10(1):49–56. [PubMed] [Google Scholar]
  17. Suzuki H., van Heijenoort Y., Tamura T., Mizoguchi J., Hirota Y., van Heijenoort J. In vitro peptidoglycan polymerization catalysed by penicillin binding protein 1b of Escherichia coli K-12. FEBS Lett. 1980 Feb 11;110(2):245–249. doi: 10.1016/0014-5793(80)80083-4. [DOI] [PubMed] [Google Scholar]
  18. Terrak M., Ghosh T. K., van Heijenoort J., Van Beeumen J., Lampilas M., Aszodi J., Ayala J. A., Ghuysen J. M., Nguyen-Distèche M. The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan-polymerizing penicillin-binding protein 1b of Escherichia coli. Mol Microbiol. 1999 Oct;34(2):350–364. doi: 10.1046/j.1365-2958.1999.01612.x. [DOI] [PubMed] [Google Scholar]
  19. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Van Heijenoort Y., Derrien M., Van Heijenoort J. Polymerization by transglycosylation in the biosynthesis of the peptidoglycan of Escherichia coli K 12 and its inhibition by antibiotics. FEBS Lett. 1978 May 1;89(1):141–144. doi: 10.1016/0014-5793(78)80540-7. [DOI] [PubMed] [Google Scholar]
  21. Wang C. C., Schultz D. E., Nicholas R. A. Localization of a putative second membrane association site in penicillin-binding protein 1B of Escherichia coli. Biochem J. 1996 May 15;316(Pt 1):149–156. doi: 10.1042/bj3160149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Waxman D. J., Strominger J. L. Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. Annu Rev Biochem. 1983;52:825–869. doi: 10.1146/annurev.bi.52.070183.004141. [DOI] [PubMed] [Google Scholar]
  23. Wu C. Y., Alborn W. E., Jr, Flokowitsch J. E., Hoskins J., Unal S., Blaszczak L. C., Preston D. A., Skatrud P. L. Site-directed mutagenesis of the mecA gene from a methicillin-resistant strain of Staphylococcus aureus. J Bacteriol. 1994 Jan;176(2):443–449. doi: 10.1128/jb.176.2.443-449.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. di Guilmi A. M., Mouz N., Martin L., Hoskins J., Jaskunas S. R., Dideberg O., Vernet T. Glycosyltransferase domain of penicillin-binding protein 2a from Streptococcus pneumoniae is membrane associated. J Bacteriol. 1999 May;181(9):2773–2781. doi: 10.1128/jb.181.9.2773-2781.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES