Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Aug 15;350(Pt 1):123–129.

A natural sequence consisting of overlapping glucocorticoid-responsive elements mediates glucocorticoid, but not androgen, regulation of gene expression.

C Massaad 1, M Garlatti 1, E M Wilson 1, F Cadepond 1, R Barouki 1
PMCID: PMC1221233  PMID: 10926835

Abstract

Cytosolic aspartate aminotransferase (cAspAT) is regulated by glucocorticoids in rat liver and kidney. Part of this regulation is mediated by an unusual glucocorticoid-responsive element (GRE)-like sequence called GRE A. GRE A is composed of two overlapping imperfect GREs, each comprising a conserved half-site (half-sites 1 and 4 respectively) and a poorly conserved half-site (half-sites 2 and 3 respectively). The sequence binds co-operatively two dimers of the glucocorticoid receptor (GR) and mediates efficient glucocorticoid regulation of gene expression. Analysis of deletions of the cAspAT gene promoter and subcloning of GRE A upstream of the thymidine kinase promoter indicate that this sequence is responsive to glucocorticoids, but not to androgens. Electrophoretic mobility shift assays indicate that the GRE A unit does not bind the androgen receptor (AR). The modification of three nucleotides in the poorly conserved half-sites 2 and 3, converting GRE A into two overlapping high-affinity GREs (ov-cGRE), resulted in co-operative binding of the AR. Furthermore, ov-cGRE efficiently mediated androgen regulation of the thymidine kinase promoter. A single base modification in half-site 2 or 3 in GRE A allowed the binding of the AR as one or two dimers respectively, and restored transcriptional activation by androgens only in the latter case. Thus the poor affinity of the AR for half-sites 2 and 3 prevented its binding to GRE A, indicating that the overlapping GRE A sequence of the cAspAT gene promoter discriminates a glucocorticoid-mediated from an androgen-mediated response.

Full Text

The Full Text of this article is available as a PDF (161.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler A. J., Danielsen M., Robins D. M. Androgen-specific gene activation via a consensus glucocorticoid response element is determined by interaction with nonreceptor factors. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11660–11663. doi: 10.1073/pnas.89.24.11660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adler A. J., Scheller A., Robins D. M. The stringency and magnitude of androgen-specific gene activation are combinatorial functions of receptor and nonreceptor binding site sequences. Mol Cell Biol. 1993 Oct;13(10):6326–6335. doi: 10.1128/mcb.13.10.6326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aggerbeck M., Garlatti M., Feilleux-Duché S., Veyssier C., Daheshia M., Hanoune J., Barouki R. Regulation of the cytosolic aspartate aminotransferase housekeeping gene promoter by glucocorticoids, cAMP, and insulin. Biochemistry. 1993 Sep 7;32(35):9065–9072. doi: 10.1021/bi00086a011. [DOI] [PubMed] [Google Scholar]
  4. Amero S. A., Kretsinger R. H., Moncrief N. D., Yamamoto K. R., Pearson W. R. The origin of nuclear receptor proteins: a single precursor distinct from other transcription factors. Mol Endocrinol. 1992 Jan;6(1):3–7. doi: 10.1210/mend.6.1.1738368. [DOI] [PubMed] [Google Scholar]
  5. Barouki R., Pavé-Preux M., Bousquet-Lemercier B., Pol S., Bouguet J., Hanoune J. Regulation of cytosolic aspartate aminotransferase mRNAs in the Fao rat hepatoma cell line by dexamethasone, insulin and cyclic AMP. Eur J Biochem. 1989 Dec 8;186(1-2):79–85. doi: 10.1111/j.1432-1033.1989.tb15180.x. [DOI] [PubMed] [Google Scholar]
  6. Beato M. Gene regulation by steroid hormones. Cell. 1989 Feb 10;56(3):335–344. doi: 10.1016/0092-8674(89)90237-7. [DOI] [PubMed] [Google Scholar]
  7. Bonvalet J. P., Doignon I., Blot-Chabaud M., Pradelles P., Farman N. Distribution of 11 beta-hydroxysteroid dehydrogenase along the rabbit nephron. J Clin Invest. 1990 Sep;86(3):832–837. doi: 10.1172/JCI114781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cao X., Preiss T., Slater E. P., Westphal H. M., Beato M. Expression and functional analysis of steroid receptor fragments secreted from Staphylococcus aureus. J Steroid Biochem Mol Biol. 1993 Jan;44(1):1–11. doi: 10.1016/0960-0760(93)90145-m. [DOI] [PubMed] [Google Scholar]
  9. Claessens F., Alen P., Devos A., Peeters B., Verhoeven G., Rombauts W. The androgen-specific probasin response element 2 interacts differentially with androgen and glucocorticoid receptors. J Biol Chem. 1996 Aug 9;271(32):19013–19016. doi: 10.1074/jbc.271.32.19013. [DOI] [PubMed] [Google Scholar]
  10. Feilleux-Duché S., Garlatti M., Aggerbeck M., Poyard M., Bouguet J., Hanoune J., Barouki R. Cell-specific regulation of cytosolic aspartate aminotransferase by glucocorticoids in the rat kidney. Am J Physiol. 1993 Nov;265(5 Pt 1):C1298–C1305. doi: 10.1152/ajpcell.1993.265.5.C1298. [DOI] [PubMed] [Google Scholar]
  11. Franklin R. B., Kukoyi B. I., Akuffo V., Costello L. C. Testosterone stimulation of mitochondrial aspartate aminotransferase levels and biosynthesis in rat ventral prostate. J Steroid Biochem. 1987 Sep;28(3):247–256. doi: 10.1016/0022-4731(87)91015-6. [DOI] [PubMed] [Google Scholar]
  12. Franklin R. B., Qian K., Costello L. C. Regulation of aspartate aminotransferase messenger ribonucleic acid level by testosterone. J Steroid Biochem. 1990 Apr;35(5):569–574. doi: 10.1016/0022-4731(90)90200-c. [DOI] [PubMed] [Google Scholar]
  13. Freedman L. P. Anatomy of the steroid receptor zinc finger region. Endocr Rev. 1992 May;13(2):129–145. doi: 10.1210/edrv-13-2-129. [DOI] [PubMed] [Google Scholar]
  14. Garlatti M., Daheshia M., Slater E., Bouguet J., Hanoune J., Beato M., Barouki R. A functional glucocorticoid-responsive unit composed of two overlapping inactive receptor-binding sites: evidence for formation of a receptor tetramer. Mol Cell Biol. 1994 Dec;14(12):8007–8017. doi: 10.1128/mcb.14.12.8007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ikonen T., Palvimo J. J., Jänne O. A. Interaction between the amino- and carboxyl-terminal regions of the rat androgen receptor modulates transcriptional activity and is influenced by nuclear receptor coactivators. J Biol Chem. 1997 Nov 21;272(47):29821–29828. doi: 10.1074/jbc.272.47.29821. [DOI] [PubMed] [Google Scholar]
  16. Ishikawa Y., Homcy C. J. High efficiency gene transfer into mammalian cells by a double transfection protocol. Nucleic Acids Res. 1992 Aug 25;20(16):4367–4367. doi: 10.1093/nar/20.16.4367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Karvonen U., Kallio P. J., Jänne O. A., Palvimo J. J. Interaction of androgen receptors with androgen response element in intact cells. Roles of amino- and carboxyl-terminal regions and the ligand. J Biol Chem. 1997 Jun 20;272(25):15973–15979. doi: 10.1074/jbc.272.25.15973. [DOI] [PubMed] [Google Scholar]
  18. Knowles B. B., Howe C. C., Aden D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980 Jul 25;209(4455):497–499. doi: 10.1126/science.6248960. [DOI] [PubMed] [Google Scholar]
  19. Laudet V. Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J Mol Endocrinol. 1997 Dec;19(3):207–226. doi: 10.1677/jme.0.0190207. [DOI] [PubMed] [Google Scholar]
  20. Laudet V., Hänni C., Coll J., Catzeflis F., Stéhelin D. Evolution of the nuclear receptor gene superfamily. EMBO J. 1992 Mar;11(3):1003–1013. doi: 10.1002/j.1460-2075.1992.tb05139.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mangelsdorf D. J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P. The nuclear receptor superfamily: the second decade. Cell. 1995 Dec 15;83(6):835–839. doi: 10.1016/0092-8674(95)90199-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Massaad C., Coumoul X., Sabbah M., Garlatti M., Redeuilh G., Barouki R. Properties of overlapping EREs: synergistic activation of transcription and cooperative binding of ER. Biochemistry. 1998 Apr 28;37(17):6023–6032. doi: 10.1021/bi972445e. [DOI] [PubMed] [Google Scholar]
  23. Massaad C., Lombès M., Aggerbeck M., Rafestin-Oblin M. E., Barouki R. Cell-specific, promoter-dependent mineralocorticoid agonist activity of spironolactone. Mol Pharmacol. 1997 Feb;51(2):285–292. doi: 10.1124/mol.51.2.285. [DOI] [PubMed] [Google Scholar]
  24. Nardulli A. M., Greene G. L., Shapiro D. J. Human estrogen receptor bound to an estrogen response element bends DNA. Mol Endocrinol. 1993 Mar;7(3):331–340. doi: 10.1210/mend.7.3.8483477. [DOI] [PubMed] [Google Scholar]
  25. Palvimo J. J., Reinikainen P., Ikonen T., Kallio P. J., Moilanen A., Jänne O. A. Mutual transcriptional interference between RelA and androgen receptor. J Biol Chem. 1996 Sep 27;271(39):24151–24156. doi: 10.1074/jbc.271.39.24151. [DOI] [PubMed] [Google Scholar]
  26. Pearce D., Yamamoto K. R. Mineralocorticoid and glucocorticoid receptor activities distinguished by nonreceptor factors at a composite response element. Science. 1993 Feb 19;259(5098):1161–1165. doi: 10.1126/science.8382376. [DOI] [PubMed] [Google Scholar]
  27. Roche P. J., Hoare S. A., Parker M. G. A consensus DNA-binding site for the androgen receptor. Mol Endocrinol. 1992 Dec;6(12):2229–2235. doi: 10.1210/mend.6.12.1491700. [DOI] [PubMed] [Google Scholar]
  28. Rundlett S. E., Miesfeld R. L. Quantitative differences in androgen and glucocorticoid receptor DNA binding properties contribute to receptor-selective transcriptional regulation. Mol Cell Endocrinol. 1995 Mar;109(1):1–10. doi: 10.1016/0303-7207(95)03477-o. [DOI] [PubMed] [Google Scholar]
  29. Scheller A., Hughes E., Golden K. L., Robins D. M. Multiple receptor domains interact to permit, or restrict, androgen-specific gene activation. J Biol Chem. 1998 Sep 11;273(37):24216–24222. doi: 10.1074/jbc.273.37.24216. [DOI] [PubMed] [Google Scholar]
  30. Schweizer-Groyer G., Cadepond F., Jibard N., Neau E., Segard-Maurel I., Baulieu E. E., Groyer A. Stimulation of transcription in vitro from a liver-specific promoter by human glucocorticoid receptor (hGRalpha). Biochem J. 1997 Jun 15;324(Pt 3):823–831. doi: 10.1042/bj3240823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Segard-Maurel I., Rajkowski K., Jibard N., Schweizer-Groyer G., Baulieu E. E., Cadepond F. Glucocorticosteroid receptor dimerization investigated by analysis of receptor binding to glucocorticosteroid responsive elements using a monomer-dimer equilibrium model. Biochemistry. 1996 Feb 6;35(5):1634–1642. doi: 10.1021/bi951369h. [DOI] [PubMed] [Google Scholar]
  32. Wong C. I., Zhou Z. X., Sar M., Wilson E. M. Steroid requirement for androgen receptor dimerization and DNA binding. Modulation by intramolecular interactions between the NH2-terminal and steroid-binding domains. J Biol Chem. 1993 Sep 5;268(25):19004–19012. [PubMed] [Google Scholar]
  33. Zhou Z., Corden J. L., Brown T. R. Identification and characterization of a novel androgen response element composed of a direct repeat. J Biol Chem. 1997 Mar 28;272(13):8227–8235. doi: 10.1074/jbc.272.13.8227. [DOI] [PubMed] [Google Scholar]
  34. de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES