Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Aug 15;350(Pt 1):163–169.

Regulation of GLUT5, GLUT2 and intestinal brush-border fructose absorption by the extracellular signal-regulated kinase, p38 mitogen-activated kinase and phosphatidylinositol 3-kinase intracellular signalling pathways: implications for adaptation to diabetes.

P A Helliwell 1, M Richardson 1, J Affleck 1, G L Kellett 1
PMCID: PMC1221238  PMID: 10926840

Abstract

We have investigated the role of the extracellular signal-regulated kinase (ERK), p38 and phosphatidylinositol 3-kinase (PI 3-kinase) pathways in the regulation of intestinal fructose transport. Different combinations of anisomycin, PD98059 and wortmannin had very different effects on fructose transport in perfused isolated loops of rat jejunum. Transport was stimulated maximally by anisomycin (2 microM) and blocked by SB203580 (20 microM), confirming involvement of the p38 pathway. PD98059 (50 microM) alone had little effect on fructose transport. However, it had a dramatic effect on stimulation by anisomycin, diminishing the K(a) 50-fold from 1 microM to 20 nM to show that the ERK pathway restrains the p38 pathway. The K(a) for diabetic jejunum was 30 nM and PD98059 had no effect. Transport in the presence of anisomycin was 3.4-fold that for anisomycin plus PD98059 plus wortmannin. Transport was mediated by both GLUT5 and GLUT2. In general, GLUT2 levels increased up to 4-fold within minutes and with only minimal changes in GLUT5 or SGLT1 levels, demonstrating that GLUT2 trafficks by a rapid trafficking pathway distinct from that of GLUT5 and SGLT1. GLUT2 intrinsic activity was regulated over a 9-fold range. It is concluded that there is extensive cross-talk between the ERK, p38 and PI 3-kinase pathways in their control of brush-border fructose transport by modulation of both the levels and intrinsic activities of GLUT5 and GLUT2. The potential of the intracellular signalling pathways to regulate short-term nutrient transport during the assimilation of a meal and longer-term adaptation to diabetes and hyperglycaemia is discussed.

Full Text

The Full Text of this article is available as a PDF (167.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barros L. F., Young M., Saklatvala J., Baldwin S. A. Evidence of two mechanisms for the activation of the glucose transporter GLUT1 by anisomycin: p38(MAP kinase) activation and protein synthesis inhibition in mammalian cells. J Physiol. 1997 Nov 1;504(Pt 3):517–525. doi: 10.1111/j.1469-7793.1997.517bd.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burant C. F., Takeda J., Brot-Laroche E., Bell G. I., Davidson N. O. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem. 1992 Jul 25;267(21):14523–14526. [PubMed] [Google Scholar]
  3. Cheeseman C. I. GLUT2 is the transporter for fructose across the rat intestinal basolateral membrane. Gastroenterology. 1993 Oct;105(4):1050–1056. doi: 10.1016/0016-5085(93)90948-c. [DOI] [PubMed] [Google Scholar]
  4. Cheeseman C. I., Maenz D. D. Rapid regulation of D-glucose transport in basolateral membrane of rat jejunum. Am J Physiol. 1989 May;256(5 Pt 1):G878–G883. doi: 10.1152/ajpgi.1989.256.5.G878. [DOI] [PubMed] [Google Scholar]
  5. Corpe C. P., Basaleh M. M., Affleck J., Gould G., Jess T. J., Kellett G. L. The regulation of GLUT5 and GLUT2 activity in the adaptation of intestinal brush-border fructose transport in diabetes. Pflugers Arch. 1996 Jun;432(2):192–201. doi: 10.1007/s004240050124. [DOI] [PubMed] [Google Scholar]
  6. Crouzoulon G., Korieh A. Fructose transport by rat intestinal brush border membrane vesicles. Effect of high fructose diet followed by return to standard diet. Comp Biochem Physiol A Comp Physiol. 1991;100(1):175–182. doi: 10.1016/0300-9629(91)90203-o. [DOI] [PubMed] [Google Scholar]
  7. Dieckgraefe B. K., Weems D. M., Santoro S. A., Alpers D. H. ERK and p38 MAP kinase pathways are mediators of intestinal epithelial wound-induced signal transduction. Biochem Biophys Res Commun. 1997 Apr 17;233(2):389–394. doi: 10.1006/bbrc.1997.6469. [DOI] [PubMed] [Google Scholar]
  8. Gould G. W., Cuenda A., Thomson F. J., Cohen P. The activation of distinct mitogen-activated protein kinase cascades is required for the stimulation of 2-deoxyglucose uptake by interleukin-1 and insulin-like growth factor-1 in KB cells. Biochem J. 1995 Nov 1;311(Pt 3):735–738. doi: 10.1042/bj3110735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harrison S. A., Buxton J. M., Czech M. P. Suppressed intrinsic catalytic activity of GLUT1 glucose transporters in insulin-sensitive 3T3-L1 adipocytes. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7839–7843. doi: 10.1073/pnas.88.17.7839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heidenreich K. A., Kummer J. L. Inhibition of p38 mitogen-activated protein kinase by insulin in cultured fetal neurons. J Biol Chem. 1996 Apr 26;271(17):9891–9894. doi: 10.1074/jbc.271.17.9891. [DOI] [PubMed] [Google Scholar]
  11. Helliwell P. A., Richardson M., Affleck J., Kellett G. L. Stimulation of fructose transport across the intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C. Biochem J. 2000 Aug 15;350(Pt 1):149–154. [PMC free article] [PubMed] [Google Scholar]
  12. Kellett G. L., Barker E. D. The effect of vanadate on glucose transport and metabolism in rat small intestine. Biochim Biophys Acta. 1989 Mar 13;979(3):311–315. doi: 10.1016/0005-2736(89)90250-2. [DOI] [PubMed] [Google Scholar]
  13. Kellett G. L., Helliwell P. A. The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane. Biochem J. 2000 Aug 15;350(Pt 1):155–162. [PMC free article] [PubMed] [Google Scholar]
  14. Kellett G. L., Jamal A., Robertson J. P., Wollen N. The acute regulation of glucose absorption, transport and metabolism in rat small intestine by insulin in vivo. Biochem J. 1984 May 1;219(3):1027–1035. doi: 10.1042/bj2191027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maenz D. D., Cheeseman C. I. Effect of hyperglycemia on D-glucose transport across the brush-border and basolateral membrane of rat small intestine. Biochim Biophys Acta. 1986 Aug 21;860(2):277–285. doi: 10.1016/0005-2736(86)90524-9. [DOI] [PubMed] [Google Scholar]
  16. Pennington A. M., Corpe C. P., Kellett G. L. Rapid regulation of rat jejunal glucose transport by insulin in a luminally and vascularly perfused preparation. J Physiol. 1994 Jul 15;478(Pt 2):187–193. doi: 10.1113/jphysiol.1994.sp020241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rand E. B., Depaoli A. M., Davidson N. O., Bell G. I., Burant C. F. Sequence, tissue distribution, and functional characterization of the rat fructose transporter GLUT5. Am J Physiol. 1993 Jun;264(6 Pt 1):G1169–G1176. doi: 10.1152/ajpgi.1993.264.6.G1169. [DOI] [PubMed] [Google Scholar]
  18. Rea S., James D. E. Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes. 1997 Nov;46(11):1667–1677. doi: 10.2337/diab.46.11.1667. [DOI] [PubMed] [Google Scholar]
  19. Sigrist-Nelson K., Hopfer U. A distinct D-fructose transport system in isolated brush border membrane. Biochim Biophys Acta. 1974 Oct 29;367(2):247–254. doi: 10.1016/0005-2736(74)90047-9. [DOI] [PubMed] [Google Scholar]
  20. Thorens B., Cheng Z. Q., Brown D., Lodish H. F. Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney cells. Am J Physiol. 1990 Dec;259(6 Pt 1):C279–C285. doi: 10.1152/ajpcell.1990.259.2.C279. [DOI] [PubMed] [Google Scholar]
  21. Wollen N., Kellett G. L. Regulation of glucose homeostasis in rat jejunum by despentapeptide-insulin in vitro. Gut. 1988 Aug;29(8):1064–1069. doi: 10.1136/gut.29.8.1064. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES