Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Aug 15;350(Pt 1):171–180.

Substrates of semicarbazide-sensitive amine oxidase co-operate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells.

G Enrique-Tarancón 1, I Castan 1, N Morin 1, L Marti 1, A Abella 1, M Camps 1, R Casamitjana 1, M Palacín 1, X Testar 1, E Degerman 1, C Carpéné 1, A Zorzano 1
PMCID: PMC1221239  PMID: 10926841

Abstract

It has been shown that the combination of benzylamine or tyramine and low concentrations of vanadate markedly stimulates glucose transport in rat adipocytes by a mechanism that requires semicarbazide-sensitive amine oxidase (SSAO) activity and H(2)O(2) formation. Here we have further analysed the insulin-like effects of the combination of SSAO substrates and vanadate and we have studied the signal-transduction pathway activated in rat adipocytes. We found that several SSAO substrates (benzylamine, tyramine, methylamine, n-decylamine, histamine, tryptamine or beta-phenylethylamine), in combination with low concentrations of vanadate, stimulate glucose transport in isolated rat adipocytes. Furthermore, SSAO substrates together with vanadate stimulated the recruitment of GLUT4 to the cell surface in isolated rat adipocytes. Benzylamine plus vanadate also stimulated glucose transport and GLUT4 translocation in 3T3-L1 adipocytes. Benzylamine or tyramine in combination with vanadate potently stimulated the tyrosine phosphorylation of both insulin receptor substrate (IRS)-1 and IRS-3. In contrast, benzylamine and vanadate caused only a weak stimulation of insulin receptor kinase. Benzylamine or tyramine in combination with vanadate also stimulated phosphoinositide 3-kinase activity; wortmannin abolished the stimulatory effect of benzylamine and vanadate on glucose transport in adipose cells. Furthermore, the administration of benzylamine and vanadate in vivo caused a rapid lowering of plasma glucose levels, which took place in the absence of alterations in plasma insulin. On the basis of these results we propose that SSAO activity regulates glucose transport in adipocytes. SSAO oxidative activity stimulates glucose transport via the translocation of GLUT4 carriers to the cell surface, resulting from a potent tyrosine phosphorylation of IRS-1 and IRS-3 and phosphoinositide 3-kinase activation. Our results also indicate that substrates of SSAO might regulate glucose disposal in vivo.

Full Text

The Full Text of this article is available as a PDF (359.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrand M. A., Callingham B. A. Monoamine oxidase activities in brown adipose tissue of the rat: some properties and subcellular distribution. Biochem Pharmacol. 1982 Jun 15;31(12):2177–2184. doi: 10.1016/0006-2952(82)90511-1. [DOI] [PubMed] [Google Scholar]
  2. Bernier M., Laird D. M., Lane M. D. Effect of vanadate on the cellular accumulation of pp15, an apparent product of insulin receptor tyrosine kinase action. J Biol Chem. 1988 Sep 25;263(27):13626–13634. [PubMed] [Google Scholar]
  3. Bono P., Salmi M., Smith D. J., Jalkanen S. Cloning and characterization of mouse vascular adhesion protein-1 reveals a novel molecule with enzymatic activity. J Immunol. 1998 Jun 1;160(11):5563–5571. [PubMed] [Google Scholar]
  4. Carpéné C., Chalaux E., Lizarbe M., Estrada A., Mora C., Palacin M., Zorzano A., Lafontan M., Testar X. Beta 3-adrenergic receptors are responsible for the adrenergic inhibition of insulin-stimulated glucose transport in rat adipocytes. Biochem J. 1993 Nov 15;296(Pt 1):99–105. doi: 10.1042/bj2960099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castan I., Wijkander J., Manganiello V., Degerman E. Mechanisms of inhibition of lipolysis by insulin, vanadate and peroxovanadate in rat adipocytes. Biochem J. 1999 Apr 15;339(Pt 2):281–289. [PMC free article] [PubMed] [Google Scholar]
  6. Chang K. J., Marcus N. A., Cuatrecasas P. Cyclic adenosine monophosphate-dependent phosphorylation of specific fat cell membrane proteins by an endogenous membrane-bound protein kinase. Possible involvement in the regulation of insulin-stimulated glucose transport. J Biol Chem. 1974 Nov 10;249(21):6854–6865. [PubMed] [Google Scholar]
  7. Enrique-Tarancón G., Marti L., Morin N., Lizcano J. M., Unzeta M., Sevilla L., Camps M., Palacín M., Testar X., Carpéné C. Role of semicarbazide-sensitive amine oxidase on glucose transport and GLUT4 recruitment to the cell surface in adipose cells. J Biol Chem. 1998 Apr 3;273(14):8025–8032. doi: 10.1074/jbc.273.14.8025. [DOI] [PubMed] [Google Scholar]
  8. Fantus I. G., Kadota S., Deragon G., Foster B., Posner B. I. Pervanadate [peroxide(s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase. Biochemistry. 1989 Oct 31;28(22):8864–8871. doi: 10.1021/bi00448a027. [DOI] [PubMed] [Google Scholar]
  9. Fernández de Arriba A., Lizcano J. M., Balsa D., Unzeta M. Contribution of different amine oxidases to the metabolism of dopamine in bovine retina. Biochem Pharmacol. 1991 Nov 27;42(12):2355–2361. doi: 10.1016/0006-2952(91)90241-v. [DOI] [PubMed] [Google Scholar]
  10. Green A. The insulin-like effect of sodium vanadate on adipocyte glucose transport is mediated at a post-insulin-receptor level. Biochem J. 1986 Sep 15;238(3):663–669. doi: 10.1042/bj2380663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gumà A., Mora C., Santalucía T., Viñals F., Testar X., Palacín M., Zorzano A. System A transport activity is stimulated in skeletal muscle in response to diabetes. FEBS Lett. 1992 Sep 21;310(1):51–54. doi: 10.1016/0014-5793(92)81144-b. [DOI] [PubMed] [Google Scholar]
  12. Heffetz D., Rutter W. J., Zick Y. The insulinomimetic agents H2O2 and vanadate stimulate tyrosine phosphorylation of potential target proteins for the insulin receptor kinase in intact cells. Biochem J. 1992 Dec 1;288(Pt 2):631–635. doi: 10.1042/bj2880631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Høgdall E. V., Houen G., Borre M., Bundgaard J. R., Larsson L. I., Vuust J. Structure and tissue-specific expression of genes encoding bovine copper amine oxidases. Eur J Biochem. 1998 Jan 15;251(1-2):320–328. doi: 10.1046/j.1432-1327.1998.2510320.x. [DOI] [PubMed] [Google Scholar]
  14. Imamura Y., Kubota R., Wang Y., Asakawa S., Kudoh J., Mashima Y., Oguchi Y., Shimizu N. Human retina-specific amine oxidase (RAO): cDNA cloning, tissue expression, and chromosomal mapping. Genomics. 1997 Mar 1;40(2):277–283. doi: 10.1006/geno.1996.4570. [DOI] [PubMed] [Google Scholar]
  15. Imamura Y., Noda S., Mashima Y., Kudoh J., Oguchi Y., Shimizu N. Human retina-specific amine oxidase: genomic structure of the gene (AOC2), alternatively spliced variant, and mRNA expression in retina. Genomics. 1998 Jul 15;51(2):293–298. doi: 10.1006/geno.1998.5357. [DOI] [PubMed] [Google Scholar]
  16. Kaburagi Y., Satoh S., Tamemoto H., Yamamoto-Honda R., Tobe K., Veki K., Yamauchi T., Kono-Sugita E., Sekihara H., Aizawa S. Role of insulin receptor substrate-1 and pp60 in the regulation of insulin-induced glucose transport and GLUT4 translocation in primary adipocytes. J Biol Chem. 1997 Oct 10;272(41):25839–25844. doi: 10.1074/jbc.272.41.25839. [DOI] [PubMed] [Google Scholar]
  17. Lavan B. E., Lane W. S., Lienhard G. E. The 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family. J Biol Chem. 1997 Apr 25;272(17):11439–11443. doi: 10.1074/jbc.272.17.11439. [DOI] [PubMed] [Google Scholar]
  18. Lavan B. E., Lienhard G. E. The insulin-elicited 60-kDa phosphotyrosine protein in rat adipocytes is associated with phosphatidylinositol 3-kinase. J Biol Chem. 1993 Mar 15;268(8):5921–5928. [PubMed] [Google Scholar]
  19. Lewinsohn R. Amine oxidase in human blood vessels and non-vascular smooth muscle. J Pharm Pharmacol. 1981 Sep;33(9):569–575. doi: 10.1111/j.2042-7158.1981.tb13868.x. [DOI] [PubMed] [Google Scholar]
  20. Lizcano J. M., Balsa D., Tipton K. F., Unzeta M. The oxidation of dopamine by the semicarbazide-sensitive amine oxidase (SSAO) from rat vas deferens. Biochem Pharmacol. 1991 Apr 15;41(8):1107–1110. doi: 10.1016/0006-2952(91)90647-n. [DOI] [PubMed] [Google Scholar]
  21. Lizcano J. M., Fernandez de Arriba A., Lyles G. A., Unzeta M. Several aspects on the amine oxidation by semicarbazide-sensitive amine oxidase (SSAO) from bovine lung. J Neural Transm Suppl. 1994;41:415–420. doi: 10.1007/978-3-7091-9324-2_55. [DOI] [PubMed] [Google Scholar]
  22. Lizcano J. M., Fernández de Arriba A., Tipton K. F., Unzeta M. Inhibition of bovine lung semicarbazide-sensitive amine oxidase (SSAO) by some hydrazine derivatives. Biochem Pharmacol. 1996 Jul 26;52(2):187–195. doi: 10.1016/0006-2952(96)00132-3. [DOI] [PubMed] [Google Scholar]
  23. Lyles G. A., Singh I. Vascular smooth muscle cells: a major source of the semicarbazide-sensitive amine oxidase of the rat aorta. J Pharm Pharmacol. 1985 Sep;37(9):637–643. doi: 10.1111/j.2042-7158.1985.tb05100.x. [DOI] [PubMed] [Google Scholar]
  24. Lyles G. A. Substrate-specificity of mammalian tissue-bound semicarbazide-sensitive amine oxidase. Prog Brain Res. 1995;106:293–303. doi: 10.1016/s0079-6123(08)61226-1. [DOI] [PubMed] [Google Scholar]
  25. Lönnroth P., Eriksson J. W., Posner B. I., Smith U. Peroxovanadate but not vanadate exerts insulin-like effects in human adipocytes. Diabetologia. 1993 Feb;36(2):113–116. doi: 10.1007/BF00400690. [DOI] [PubMed] [Google Scholar]
  26. Marti L., Morin N., Enrique-Tarancon G., Prevot D., Lafontan M., Testar X., Zorzano A., Carpéné C. Tyramine and vanadate synergistically stimulate glucose transport in rat adipocytes by amine oxidase-dependent generation of hydrogen peroxide. J Pharmacol Exp Ther. 1998 Apr;285(1):342–349. [PubMed] [Google Scholar]
  27. Moldes M., Fève B., Pairault J. Molecular cloning of a major mRNA species in murine 3T3 adipocyte lineage. differentiation-dependent expression, regulation, and identification as semicarbazide-sensitive amine oxidase. J Biol Chem. 1999 Apr 2;274(14):9515–9523. doi: 10.1074/jbc.274.14.9515. [DOI] [PubMed] [Google Scholar]
  28. Mooney R. A., Bordwell K. L., Luhowskyj S., Casnellie J. E. The insulin-like effect of vanadate on lipolysis in rat adipocytes is not accompanied by an insulin-like effect on tyrosine phosphorylation. Endocrinology. 1989 Jan;124(1):422–429. doi: 10.1210/endo-124-1-422. [DOI] [PubMed] [Google Scholar]
  29. Morris N. J., Ducret A., Aebersold R., Ross S. A., Keller S. R., Lienhard G. E. Membrane amine oxidase cloning and identification as a major protein in the adipocyte plasma membrane. J Biol Chem. 1997 Apr 4;272(14):9388–9392. doi: 10.1074/jbc.272.14.9388. [DOI] [PubMed] [Google Scholar]
  30. Mu D., Medzihradszky K. F., Adams G. W., Mayer P., Hines W. M., Burlingame A. L., Smith A. J., Cai D., Klinman J. P. Primary structures for a mammalian cellular and serum copper amine oxidase. J Biol Chem. 1994 Apr 1;269(13):9926–9932. [PubMed] [Google Scholar]
  31. Myers M. G., Jr, Backer J. M., Sun X. J., Shoelson S., Hu P., Schlessinger J., Yoakim M., Schaffhausen B., White M. F. IRS-1 activates phosphatidylinositol 3'-kinase by associating with src homology 2 domains of p85. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10350–10354. doi: 10.1073/pnas.89.21.10350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ogihara T., Shin B. C., Anai M., Katagiri H., Inukai K., Funaki M., Fukushima Y., Ishihara H., Takata K., Kikuchi M. Insulin receptor substrate (IRS)-2 is dephosphorylated more rapidly than IRS-1 via its association with phosphatidylinositol 3-kinase in skeletal muscle cells. J Biol Chem. 1997 May 9;272(19):12868–12873. doi: 10.1074/jbc.272.19.12868. [DOI] [PubMed] [Google Scholar]
  33. Olefsky J. M. Mechanisms of the ability of insulin to activate the glucose-transport system in rat adipocytes. Biochem J. 1978 Apr 15;172(1):137–145. doi: 10.1042/bj1720137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Posner B. I., Faure R., Burgess J. W., Bevan A. P., Lachance D., Zhang-Sun G., Fantus I. G., Ng J. B., Hall D. A., Lum B. S. Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J Biol Chem. 1994 Feb 11;269(6):4596–4604. [PubMed] [Google Scholar]
  35. Raimondi L., Conforti L., Banchelli G., Ignesti G., Pirisino R., Buffoni F. Histamine lipolytic activity and semicarbazide-sensitive amine oxidase (SSAO) of rat white adipose tissue (WAT). Biochem Pharmacol. 1993 Oct 19;46(8):1369–1376. doi: 10.1016/0006-2952(93)90101-2. [DOI] [PubMed] [Google Scholar]
  36. Raimondi L., Pirisino R., Ignesti G., Capecchi S., Banchelli G., Buffoni F. Semicarbazide-sensitive amine oxidase activity (SSAO) of rat epididymal white adipose tissue. Biochem Pharmacol. 1991 Feb 1;41(3):467–470. doi: 10.1016/0006-2952(91)90549-k. [DOI] [PubMed] [Google Scholar]
  37. Robinson L. J., James D. E. Insulin-regulated sorting of glucose transporters in 3T3-L1 adipocytes. Am J Physiol. 1992 Aug;263(2 Pt 1):E383–E393. doi: 10.1152/ajpendo.1992.263.2.E383. [DOI] [PubMed] [Google Scholar]
  38. Robinson L. J., Pang S., Harris D. S., Heuser J., James D. E. Translocation of the glucose transporter (GLUT4) to the cell surface in permeabilized 3T3-L1 adipocytes: effects of ATP insulin, and GTP gamma S and localization of GLUT4 to clathrin lattices. J Cell Biol. 1992 Jun;117(6):1181–1196. doi: 10.1083/jcb.117.6.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sciacchitano S., Taylor S. I. Cloning, tissue expression, and chromosomal localization of the mouse IRS-3 gene. Endocrinology. 1997 Nov;138(11):4931–4940. doi: 10.1210/endo.138.11.5518. [DOI] [PubMed] [Google Scholar]
  40. Shisheva A., Shechter Y. Mechanism of pervanadate stimulation and potentiation of insulin-activated glucose transport in rat adipocytes: dissociation from vanadate effect. Endocrinology. 1993 Oct;133(4):1562–1568. doi: 10.1210/endo.133.4.8404595. [DOI] [PubMed] [Google Scholar]
  41. Smith-Hall J., Pons S., Patti M. E., Burks D. J., Yenush L., Sun X. J., Kahn C. R., White M. F. The 60 kDa insulin receptor substrate functions like an IRS protein (pp60IRS3) in adipose cells. Biochemistry. 1997 Jul 8;36(27):8304–8310. doi: 10.1021/bi9630974. [DOI] [PubMed] [Google Scholar]
  42. Smith D. J., Salmi M., Bono P., Hellman J., Leu T., Jalkanen S. Cloning of vascular adhesion protein 1 reveals a novel multifunctional adhesion molecule. J Exp Med. 1998 Jul 6;188(1):17–27. doi: 10.1084/jem.188.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Whitman M., Kaplan D. R., Schaffhausen B., Cantley L., Roberts T. M. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature. 1985 May 16;315(6016):239–242. doi: 10.1038/315239a0. [DOI] [PubMed] [Google Scholar]
  44. Yale J. F., Lachance D., Bevan A. P., Vigeant C., Shaver A., Posner B. I. Hypoglycemic effects of peroxovanadium compounds in Sprague-Dawley and diabetic BB rats. Diabetes. 1995 Nov;44(11):1274–1279. doi: 10.2337/diab.44.11.1274. [DOI] [PubMed] [Google Scholar]
  45. Yu P. H., Zuo D. M. Oxidative deamination of methylamine by semicarbazide-sensitive amine oxidase leads to cytotoxic damage in endothelial cells. Possible consequences for diabetes. Diabetes. 1993 Apr;42(4):594–603. doi: 10.2337/diab.42.4.594. [DOI] [PubMed] [Google Scholar]
  46. Zhang X., McIntire W. S. Cloning and sequencing of a copper-containing, topa quinone-containing monoamine oxidase from human placenta. Gene. 1996 Nov 14;179(2):279–286. doi: 10.1016/s0378-1119(96)00387-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES