Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Aug 15;350(Pt 1):275–282.

Membrane pore architecture of a cytolytic toxin from Bacillus thuringiensis.

B Promdonkoy 1, D J Ellar 1
PMCID: PMC1221252  PMID: 10926854

Abstract

To investigate the membrane pore structure of Cyt2Aa1 toxin from Bacillus thuringiensis, 14 single-cysteine substitutions of the toxin were constructed. Five of these mutants (L172C, V186C, L189C, E214C and L220C) yielded characteristic products when processed by proteinase K; other mutants were degraded by this enzyme. Mutants that yielded characteristic proteolysed products and wild-type toxin were labelled with polarity-sensitive acrylodan (6-acryloyl-2-dimethylaminonaphthalene) at the thiol group of cysteine residues. A green-blue shift in the emission spectra was observed with all labelled toxins on transfer from an aqueous solution into a solution containing membranes or liposomes from red blood cells. These results suggested that the label moved into the hydrophobic environment of the membrane or became buried within hydrophobic regions of the protein oligomers. Digestion of membrane-bound labelled toxin with proteinase K did not cause a significant decrease in emission intensity from any of the labelled mutants. This suggests that L172C, V186C, L189C, E214C and L220C are inserted into the membrane and are therefore protected from proteolysis. In contrast, a marked decrease in emission intensity was observed when membrane-bound labelled wild-type toxin was digested with proteinase K. This suggests that Cys-19 does not insert into the membrane. Fluorimetric analysis of delipidated pore complexes suggests that L172C, V186C, L189C and E214C point towards the lipid in the membrane, whereas L220C is either within the hydrophobic environment of the protein oligomers or exposed to the membrane lipids. Most of the Cys-19 from wild-type molecules is enclosed within the hydrophobic pockets of the protein oligomers.

Full Text

The Full Text of this article is available as a PDF (156.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bone E. J., Ellar D. J. Transformation of Bacillus thuringiensis by electroporation. FEMS Microbiol Lett. 1989 Apr;49(2-3):171–177. doi: 10.1016/0378-1097(89)90033-5. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Crickmore N., Zeigler D. R., Feitelson J., Schnepf E., Van Rie J., Lereclus D., Baum J., Dean D. H. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998 Sep;62(3):807–813. doi: 10.1128/mmbr.62.3.807-813.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Du J., Knowles B. H., Li J., Ellar D. J. Biochemical characterization of Bacillus thuringiensis cytolytic toxins in association with a phospholipid bilayer. Biochem J. 1999 Feb 15;338(Pt 1):185–193. [PMC free article] [PubMed] [Google Scholar]
  6. Gill S. S., Cowles E. A., Pietrantonio P. V. The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol. 1992;37:615–636. doi: 10.1146/annurev.en.37.010192.003151. [DOI] [PubMed] [Google Scholar]
  7. Knowles B. H., Blatt M. R., Tester M., Horsnell J. M., Carroll J., Menestrina G., Ellar D. J. A cytolytic delta-endotoxin from Bacillus thuringiensis var. israelensis forms cation-selective channels in planar lipid bilayers. FEBS Lett. 1989 Feb 27;244(2):259–262. doi: 10.1016/0014-5793(89)80540-x. [DOI] [PubMed] [Google Scholar]
  8. Koni P. A., Ellar D. J. Biochemical characterization of Bacillus thuringiensis cytolytic delta-endotoxins. Microbiology. 1994 Aug;140(Pt 8):1869–1880. doi: 10.1099/13500872-140-8-1869. [DOI] [PubMed] [Google Scholar]
  9. Koni P. A., Ellar D. J. Cloning and characterization of a novel Bacillus thuringiensis cytolytic delta-endotoxin. J Mol Biol. 1993 Jan 20;229(2):319–327. doi: 10.1006/jmbi.1993.1037. [DOI] [PubMed] [Google Scholar]
  10. Li J., Koni P. A., Ellar D. J. Structure of the mosquitocidal delta-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. J Mol Biol. 1996 Mar 22;257(1):129–152. doi: 10.1006/jmbi.1996.0152. [DOI] [PubMed] [Google Scholar]
  11. Palmer M., Saweljew P., Vulicevic I., Valeva A., Kehoe M., Bhakdi S. Membrane-penetrating domain of streptolysin O identified by cysteine scanning mutagenesis. J Biol Chem. 1996 Oct 25;271(43):26664–26667. doi: 10.1074/jbc.271.43.26664. [DOI] [PubMed] [Google Scholar]
  12. Palmer M., Vulicevic I., Saweljew P., Valeva A., Kehoe M., Bhakdi S. Streptolysin O: a proposed model of allosteric interaction between a pore-forming protein and its target lipid bilayer. Biochemistry. 1998 Feb 24;37(8):2378–2383. doi: 10.1021/bi9720890. [DOI] [PubMed] [Google Scholar]
  13. Prendergast F. G., Meyer M., Carlson G. L., Iida S., Potter J. D. Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan). A thiol-selective, polarity-sensitive fluorescent probe. J Biol Chem. 1983 Jun 25;258(12):7541–7544. [PubMed] [Google Scholar]
  14. Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D. R., Dean D. H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998 Sep;62(3):775–806. doi: 10.1128/mmbr.62.3.775-806.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shepard L. A., Heuck A. P., Hamman B. D., Rossjohn J., Parker M. W., Ryan K. R., Johnson A. E., Tweten R. K. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. Biochemistry. 1998 Oct 13;37(41):14563–14574. doi: 10.1021/bi981452f. [DOI] [PubMed] [Google Scholar]
  16. Stewart G. S., Johnstone K., Hagelberg E., Ellar D. J. Commitment of bacterial spores to germinate. A measure of the trigger reaction. Biochem J. 1981 Jul 15;198(1):101–106. doi: 10.1042/bj1980101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Thomas W. E., Ellar D. J. Bacillus thuringiensis var israelensis crystal delta-endotoxin: effects on insect and mammalian cells in vitro and in vivo. J Cell Sci. 1983 Mar;60:181–197. doi: 10.1242/jcs.60.1.181. [DOI] [PubMed] [Google Scholar]
  18. Valeva A., Weisser A., Walker B., Kehoe M., Bayley H., Bhakdi S., Palmer M. Molecular architecture of a toxin pore: a 15-residue sequence lines the transmembrane channel of staphylococcal alpha-toxin. EMBO J. 1996 Apr 15;15(8):1857–1864. [PMC free article] [PubMed] [Google Scholar]
  19. Von Tersch M. A., Slatin S. L., Kulesza C. A., English L. H. Membrane-permeabilizing activities of Bacillus thuringiensis coleopteran-active toxin CryIIIB2 and CryIIIB2 domain I peptide. Appl Environ Microbiol. 1994 Oct;60(10):3711–3717. doi: 10.1128/aem.60.10.3711-3717.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ward E. S., Ellar D. J., Chilcott C. N. Single amino acid changes in the Bacillus thuringiensis var. israelensis delta-endotoxin affect the toxicity and expression of the protein. J Mol Biol. 1988 Aug 5;202(3):527–535. doi: 10.1016/0022-2836(88)90283-5. [DOI] [PubMed] [Google Scholar]
  21. Ward E. S., Ellar D. J., Todd J. A. Cloning and expression in Escherichia coli of the insecticidal delta-endotoxin gene of Bacillus thuringiensis var. israelensis. FEBS Lett. 1984 Oct 1;175(2):377–382. doi: 10.1016/0014-5793(84)80772-3. [DOI] [PubMed] [Google Scholar]
  22. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES