Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Sep 1;350(Pt 2):429–441.

Human sphingosine kinase: purification, molecular cloning and characterization of the native and recombinant enzymes.

S M Pitson 1, R J D'andrea 1, L Vandeleur 1, P A Moretti 1, P Xia 1, J R Gamble 1, M A Vadas 1, B W Wattenberg 1
PMCID: PMC1221270  PMID: 10947957

Abstract

Sphingosine 1-phosphate (S1P) is a novel lipid messenger that has important roles in a wide variety of mammalian cellular processes including growth, differentiation and death. Basal levels of S1P in mammalian cells are generally low, but can increase rapidly and transiently when cells are exposed to mitogenic agents and other stimuli. This increase is largely due to increased activity of sphingosine kinase (SK), the enzyme that catalyses its formation. In the current study we have purified, cloned and characterized the first human SK to obtain a better understanding of its biochemical activity and possible activation mechanisms. The enzyme was purified to homogeneity from human placenta using ammonium sulphate precipitation, anion-exchange chromatography, calmodulin-affinity chromatography and gel-filtration chromatography. This resulted in a purification of over 10(6)-fold from the original placenta extract. The enzyme was cloned and expressed in active form in both HEK-293T cells and Escherichia coli, and the recombinant E. coli-derived SK purified to homogeneity. To establish whether post-translational modifications lead to activation of human SK activity we characterized both the purified placental enzyme and the purified recombinant SK produced in E. coli, where such modifications would not occur. The premise for this study was that post-translational modifications are likely to cause conformational changes in the structure of SK, which may result in detectable changes in the physico-chemical or catalytic properties of the enzyme. Thus the enzymes were characterized with respect to substrate specificity and kinetics, inhibition kinetics and various other physico-chemical properties. In all cases, both the native and recombinant SKs displayed remarkably similar properties, indicating that post-translational modifications are not required for basal activity of human SK.

Full Text

The Full Text of this article is available as a PDF (334.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Ancellin N., Hla T. Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5. J Biol Chem. 1999 Jul 2;274(27):18997–19002. doi: 10.1074/jbc.274.27.18997. [DOI] [PubMed] [Google Scholar]
  3. Banno Y., Kato M., Hara A., Nozawa Y. Evidence for the presence of multiple forms of Sph kinase in human platelets. Biochem J. 1998 Oct 15;335(Pt 2):301–304. doi: 10.1042/bj3350301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buehrer B. M., Bardes E. S., Bell R. M. Protein kinase C-dependent regulation of human erythroleukemia (HEL) cell sphingosine kinase activity. Biochim Biophys Acta. 1996 Oct 18;1303(3):233–242. doi: 10.1016/0005-2760(96)00092-6. [DOI] [PubMed] [Google Scholar]
  5. Buehrer B. M., Bell R. M. Inhibition of sphingosine kinase in vitro and in platelets. Implications for signal transduction pathways. J Biol Chem. 1992 Feb 15;267(5):3154–3159. [PubMed] [Google Scholar]
  6. Buehrer B. M., Bell R. M. Sphingosine kinase: properties and cellular functions. Adv Lipid Res. 1993;26:59–67. [PubMed] [Google Scholar]
  7. Cuvillier O., Pirianov G., Kleuser B., Vanek P. G., Coso O. A., Gutkind S., Spiegel S. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature. 1996 Jun 27;381(6585):800–803. doi: 10.1038/381800a0. [DOI] [PubMed] [Google Scholar]
  8. Desai N. N., Zhang H., Olivera A., Mattie M. E., Spiegel S. Sphingosine-1-phosphate, a metabolite of sphingosine, increases phosphatidic acid levels by phospholipase D activation. J Biol Chem. 1992 Nov 15;267(32):23122–23128. [PubMed] [Google Scholar]
  9. Dickson R. C. Sphingolipid functions in Saccharomyces cerevisiae: comparison to mammals. Annu Rev Biochem. 1998;67:27–48. doi: 10.1146/annurev.biochem.67.1.27. [DOI] [PubMed] [Google Scholar]
  10. Exton J. H. New developments in phospholipase D. J Biol Chem. 1997 Jun 20;272(25):15579–15582. doi: 10.1074/jbc.272.25.15579. [DOI] [PubMed] [Google Scholar]
  11. Ghosh T. K., Bian J., Gill D. L. Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium. J Biol Chem. 1994 Sep 9;269(36):22628–22635. [PubMed] [Google Scholar]
  12. Graham F. L., van der Eb A. J. Transformation of rat cells by DNA of human adenovirus 5. Virology. 1973 Aug;54(2):536–539. doi: 10.1016/0042-6822(73)90163-3. [DOI] [PubMed] [Google Scholar]
  13. Hannun Y. A., Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol. 2000 Feb;10(2):73–80. doi: 10.1016/s0962-8924(99)01694-3. [DOI] [PubMed] [Google Scholar]
  14. Igarashi Y. Functional roles of sphingosine, sphingosine 1-phosphate, and methylsphingosines: in regard to membrane sphingolipid signaling pathways. J Biochem. 1997 Dec;122(6):1080–1087. doi: 10.1093/oxfordjournals.jbchem.a021865. [DOI] [PubMed] [Google Scholar]
  15. Jeng A. Y., Sharkey N. A., Blumberg P. M. Purification of stable protein kinase C from mouse brain cytosol by specific ligand elution using fast protein liquid chromatography. Cancer Res. 1986 Apr;46(4 Pt 2):1966–1971. [PubMed] [Google Scholar]
  16. Kanoh H., Yamada K., Sakane F. Diacylglycerol kinase: a key modulator of signal transduction? Trends Biochem Sci. 1990 Feb;15(2):47–50. doi: 10.1016/0968-0004(90)90172-8. [DOI] [PubMed] [Google Scholar]
  17. Kohama T., Olivera A., Edsall L., Nagiec M. M., Dickson R., Spiegel S. Molecular cloning and functional characterization of murine sphingosine kinase. J Biol Chem. 1998 Sep 11;273(37):23722–23728. doi: 10.1074/jbc.273.37.23722. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lanterman M. M., Saba J. D. Characterization of sphingosine kinase (SK) activity in Saccharomyces cerevisiae and isolation of SK-deficient mutants. Biochem J. 1998 Jun 1;332(Pt 2):525–531. doi: 10.1042/bj3320525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Louie D. D., Kisic A., Schroefer G. J., Jr Sphingolipid base metabolism. Partial purification and properties of sphinganine kinase of brain. J Biol Chem. 1976 Aug 10;251(15):4557–4564. [PubMed] [Google Scholar]
  21. Masamune A., Hakomori S., Igarashi Y. N,N,N-trimethylsphingosine inhibits interleukin-1 beta-induced NF-kappa B activation and consequent E-selectin expression in human umbilical vein endothelial cells. FEBS Lett. 1995 Jun 26;367(2):205–209. doi: 10.1016/0014-5793(95)00566-r. [DOI] [PubMed] [Google Scholar]
  22. Mattie M., Brooker G., Spiegel S. Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphate-independent pathway. J Biol Chem. 1994 Feb 4;269(5):3181–3188. [PubMed] [Google Scholar]
  23. Mazurek N., Megidish T., Hakomori S., Igarashi Y. Regulatory effect of phorbol esters on sphingosine kinase in BALB/C 3T3 fibroblasts (variant A31): demonstration of cell type-specific response--a preliminary note. Biochem Biophys Res Commun. 1994 Jan 14;198(1):1–9. doi: 10.1006/bbrc.1994.1001. [DOI] [PubMed] [Google Scholar]
  24. Nagiec M. M., Skrzypek M., Nagiec E. E., Lester R. L., Dickson R. C. The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases. J Biol Chem. 1998 Jul 31;273(31):19437–19442. doi: 10.1074/jbc.273.31.19437. [DOI] [PubMed] [Google Scholar]
  25. Newton A. C. Regulation of protein kinase C. Curr Opin Cell Biol. 1997 Apr;9(2):161–167. doi: 10.1016/s0955-0674(97)80058-0. [DOI] [PubMed] [Google Scholar]
  26. Olivera A., Kohama T., Edsall L., Nava V., Cuvillier O., Poulton S., Spiegel S. Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol. 1999 Nov 1;147(3):545–558. doi: 10.1083/jcb.147.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Olivera A., Kohama T., Tu Z., Milstien S., Spiegel S. Purification and characterization of rat kidney sphingosine kinase. J Biol Chem. 1998 May 15;273(20):12576–12583. doi: 10.1074/jbc.273.20.12576. [DOI] [PubMed] [Google Scholar]
  28. Olivera A., Rosenthal J., Spiegel S. Effect of acidic phospholipids on sphingosine kinase. J Cell Biochem. 1996 Mar 15;60(4):529–537. doi: 10.1002/(sici)1097-4644(19960315)60:4<529::aid-jcb9>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  29. Olivera A., Spiegel S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature. 1993 Oct 7;365(6446):557–560. doi: 10.1038/365557a0. [DOI] [PubMed] [Google Scholar]
  30. Rameh L. E., Cantley L. C. The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem. 1999 Mar 26;274(13):8347–8350. doi: 10.1074/jbc.274.13.8347. [DOI] [PubMed] [Google Scholar]
  31. Ren R., Mayer B. J., Cicchetti P., Baltimore D. Identification of a ten-amino acid proline-rich SH3 binding site. Science. 1993 Feb 19;259(5098):1157–1161. doi: 10.1126/science.8438166. [DOI] [PubMed] [Google Scholar]
  32. Rhee S. G., Bae Y. S. Regulation of phosphoinositide-specific phospholipase C isozymes. J Biol Chem. 1997 Jun 13;272(24):15045–15048. doi: 10.1074/jbc.272.24.15045. [DOI] [PubMed] [Google Scholar]
  33. Rhoads A. R., Friedberg F. Sequence motifs for calmodulin recognition. FASEB J. 1997 Apr;11(5):331–340. doi: 10.1096/fasebj.11.5.9141499. [DOI] [PubMed] [Google Scholar]
  34. Rius R. A., Edsall L. C., Spiegel S. Activation of sphingosine kinase in pheochromocytoma PC12 neuronal cells in response to trophic factors. FEBS Lett. 1997 Nov 10;417(2):173–176. doi: 10.1016/s0014-5793(97)01277-5. [DOI] [PubMed] [Google Scholar]
  35. Saraste M., Sibbald P. R., Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990 Nov;15(11):430–434. doi: 10.1016/0968-0004(90)90281-f. [DOI] [PubMed] [Google Scholar]
  36. Schaap D., van der Wal J., van Blitterswijk W. J. Consensus sequences for ATP-binding sites in protein kinases do not apply to diacylglycerol kinases. Biochem J. 1994 Dec 1;304(Pt 2):661–662. doi: 10.1042/bj3040661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schultz J., Milpetz F., Bork P., Ponting C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5857–5864. doi: 10.1073/pnas.95.11.5857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Soderling T. R. The Ca-calmodulin-dependent protein kinase cascade. Trends Biochem Sci. 1999 Jun;24(6):232–236. doi: 10.1016/s0968-0004(99)01383-3. [DOI] [PubMed] [Google Scholar]
  39. Spiegel S., Cuvillier O., Edsall L. C., Kohama T., Menzeleev R., Olah Z., Olivera A., Pirianov G., Thomas D. M., Tu Z. Sphingosine-1-phosphate in cell growth and cell death. Ann N Y Acad Sci. 1998 Jun 19;845:11–18. doi: 10.1111/j.1749-6632.1998.tb09658.x. [DOI] [PubMed] [Google Scholar]
  40. Spiegel S. Sphingosine 1-phosphate: a prototype of a new class of second messengers. J Leukoc Biol. 1999 Mar;65(3):341–344. doi: 10.1002/jlb.65.3.341. [DOI] [PubMed] [Google Scholar]
  41. Su Y., Rosenthal D., Smulson M., Spiegel S. Sphingosine 1-phosphate, a novel signaling molecule, stimulates DNA binding activity of AP-1 in quiescent Swiss 3T3 fibroblasts. J Biol Chem. 1994 Jun 10;269(23):16512–16517. [PubMed] [Google Scholar]
  42. Topham M. K., Prescott S. M. Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions. J Biol Chem. 1999 Apr 23;274(17):11447–11450. doi: 10.1074/jbc.274.17.11447. [DOI] [PubMed] [Google Scholar]
  43. Van Brocklyn J. R., Lee M. J., Menzeleev R., Olivera A., Edsall L., Cuvillier O., Thomas D. M., Coopman P. J., Thangada S., Liu C. H. Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J Cell Biol. 1998 Jul 13;142(1):229–240. doi: 10.1083/jcb.142.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Van Veldhoven P. P., Mannaerts G. P. Subcellular localization and membrane topology of sphingosine-1-phosphate lyase in rat liver. J Biol Chem. 1991 Jul 5;266(19):12502–12507. [PubMed] [Google Scholar]
  45. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wall R. T., Harker L. A., Quadracci L. J., Striker G. E. Factors influencing endothelial cell proliferation in vitro. J Cell Physiol. 1978 Aug;96(2):203–213. doi: 10.1002/jcp.1040960209. [DOI] [PubMed] [Google Scholar]
  47. Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
  48. Wu J., Spiegel S., Sturgill T. W. Sphingosine 1-phosphate rapidly activates the mitogen-activated protein kinase pathway by a G protein-dependent mechanism. J Biol Chem. 1995 May 12;270(19):11484–11488. doi: 10.1074/jbc.270.19.11484. [DOI] [PubMed] [Google Scholar]
  49. Xia P., Gamble J. R., Rye K. A., Wang L., Hii C. S., Cockerill P., Khew-Goodall Y., Bert A. G., Barter P. J., Vadas M. A. Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14196–14201. doi: 10.1073/pnas.95.24.14196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Xia P., Wang L., Gamble J. R., Vadas M. A. Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells. J Biol Chem. 1999 Nov 26;274(48):34499–34505. doi: 10.1074/jbc.274.48.34499. [DOI] [PubMed] [Google Scholar]
  51. Yatomi Y., Ruan F., Megidish T., Toyokuni T., Hakomori S., Igarashi Y. N,N-dimethylsphingosine inhibition of sphingosine kinase and sphingosine 1-phosphate activity in human platelets. Biochemistry. 1996 Jan 16;35(2):626–633. doi: 10.1021/bi9515533. [DOI] [PubMed] [Google Scholar]
  52. Yu H., Chen J. K., Feng S., Dalgarno D. C., Brauer A. W., Schreiber S. L. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell. 1994 Mar 11;76(5):933–945. doi: 10.1016/0092-8674(94)90367-0. [DOI] [PubMed] [Google Scholar]
  53. Zhou J., Saba J. D. Identification of the first mammalian sphingosine phosphate lyase gene and its functional expression in yeast. Biochem Biophys Res Commun. 1998 Jan 26;242(3):502–507. doi: 10.1006/bbrc.1997.7993. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES