Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Sep 1;350(Pt 2):477–484.

New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading.

J Sumitani 1, T Tottori 1, T Kawaguchi 1, M Arai 1
PMCID: PMC1221275  PMID: 10947962

Abstract

The alpha-amylase from Bacillus sp. no. 195 (BAA) consists of two domains: one is the catalytic domain similar to alpha-amylases from animals and Streptomyces in the N-terminal region; the other is the functionally unknown domain composed of an approx. 90-residue direct repeat in the C-terminal region. The gene coding for BAA was expressed in Streptomyces lividans TK24. Three active forms of the gene products were found. The pH and thermal profiles of BAAs, and their catalytic activities for p-nitrophenyl maltopentaoside and soluble starch, showed almost the same behaviours. The largest, 69 kDa, form (BAA-alpha) was of the same molecular mass as that of the mature protein estimated from the nucleotide sequence, and had raw-starch-binding and -degrading abilities. The second largest, 60 kDa, form (BAA-beta), whose molecular mass was the same as that of the natural enzyme from Bacillus sp. no. 195, was generated by proteolytic processing between the two repeat sequences in the C-terminal region, and had lower activities for raw starch binding and degrading than those of BAA-alpha. The smallest, 50 kDa, form (BAA-gamma) contained only the N-terminal catalytic domain as a result of removal of the C-terminal repeat sequence, which led to loss of binding and degradation of insoluble starches. Thus the starch adsorption capacity and raw-starch-degrading activity of BAAs depends on the existence of the repeat sequence in the C-terminal region. BAA-alpha was specifically adsorbed on starch or dextran (alpha-1,4 or alpha-1,6 glucan), and specifically desorbed with maltose or beta-cyclodextrin. These observations indicated that the repeat sequence of the enzyme was functional in the starch-binding domain (SBD). We propose the designation of the homologues to the SBD of glucoamylase from Aspergillus niger as family I SBDs, the homologues to that of glucoamylase from Rhizopus oryzae as family II, and the homologues of this repeat sequence of BAA as family III.

Full Text

The Full Text of this article is available as a PDF (225.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belshaw N. J., Williamson G. Specificity of the binding domain of glucoamylase 1. Eur J Biochem. 1993 Feb 1;211(3):717–724. doi: 10.1111/j.1432-1033.1993.tb17601.x. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Chen L., Coutinho P. M., Nikolov Z., Ford C. Deletion analysis of the starch-binding domain of Aspergillus glucoamylase. Protein Eng. 1995 Oct;8(10):1049–1055. doi: 10.1093/protein/8.10.1049. [DOI] [PubMed] [Google Scholar]
  4. Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Jr, Warren R. A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991 Jun;55(2):303–315. doi: 10.1128/mr.55.2.303-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Horinouchi S., Nishiyama M., Nakamura A., Beppu T. Construction and characterization of multicopy expression-vectors in Streptomyces spp. Mol Gen Genet. 1987 Dec;210(3):468–475. doi: 10.1007/BF00327199. [DOI] [PubMed] [Google Scholar]
  6. Iefuji H., Chino M., Kato M., Iimura Y. Raw-starch-digesting and thermostable alpha-amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Biochem J. 1996 Sep 15;318(Pt 3):989–996. doi: 10.1042/bj3180989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Janecek S., Sevcík J. The evolution of starch-binding domain. FEBS Lett. 1999 Jul 30;456(1):119–125. doi: 10.1016/s0014-5793(99)00919-9. [DOI] [PubMed] [Google Scholar]
  8. Jespersen H. M., MacGregor E. A., Sierks M. R., Svensson B. Comparison of the domain-level organization of starch hydrolases and related enzymes. Biochem J. 1991 Nov 15;280(Pt 1):51–55. doi: 10.1042/bj2800051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kawaguchi T., Nagae H., Murao S., Arai M. Purification and some properties of a Haim-sensitive alpha-amylase from newly isolated Bacillus sp. No. 195. Biosci Biotechnol Biochem. 1992 Nov;56(11):1792–1796. doi: 10.1271/bbb.56.1792. [DOI] [PubMed] [Google Scholar]
  10. Kimura K., Kataoka S., Ishii Y., Takano T., Yamane K. Nucleotide sequence of the beta-cyclodextrin glucanotransferase gene of alkalophilic Bacillus sp. strain 1011 and similarity of its amino acid sequence to those of alpha-amylases. J Bacteriol. 1987 Sep;169(9):4399–4402. doi: 10.1128/jb.169.9.4399-4402.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kitamoto N., Yamagata H., Kato T., Tsukagoshi N., Udaka S. Cloning and sequencing of the gene encoding thermophilic beta-amylase of Clostridium thermosulfurogenes. J Bacteriol. 1988 Dec;170(12):5848–5854. doi: 10.1128/jb.170.12.5848-5854.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Long C. M., Virolle M. J., Chang S. Y., Chang S., Bibb M. J. alpha-Amylase gene of Streptomyces limosus: nucleotide sequence, expression motifs, and amino acid sequence homology to mammalian and invertebrate alpha-amylases. J Bacteriol. 1987 Dec;169(12):5745–5754. doi: 10.1128/jb.169.12.5745-5754.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lu S., Deng P., Liu X., Luo J., Han R., Gu X., Liang S., Wang X., Li F., Lozanov V. Solution structure of the major alpha-amylase inhibitor of the crop plant amaranth. J Biol Chem. 1999 Jul 16;274(29):20473–20478. doi: 10.1074/jbc.274.29.20473. [DOI] [PubMed] [Google Scholar]
  15. Riedel K., Ritter J., Bauer S., Bronnenmeier K. The modular cellulase CelZ of the thermophilic bacterium Clostridium stercorarium contains a thermostabilizing domain. FEMS Microbiol Lett. 1998 Jul 15;164(2):261–267. doi: 10.1111/j.1574-6968.1998.tb13096.x. [DOI] [PubMed] [Google Scholar]
  16. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  17. Siggens K. W. Molecular cloning and characterization of the beta-amylase gene from Bacillus circulans. Mol Microbiol. 1987 Jul;1(1):86–91. doi: 10.1111/j.1365-2958.1987.tb00531.x. [DOI] [PubMed] [Google Scholar]
  18. Sigurskjold B. W., Svensson B., Williamson G., Driguez H. Thermodynamics of ligand binding to the starch-binding domain of glucoamylase from Aspergillus niger. Eur J Biochem. 1994 Oct 1;225(1):133–141. doi: 10.1111/j.1432-1033.1994.00133.x. [DOI] [PubMed] [Google Scholar]
  19. Sorimachi K., Le Gal-Coëffet M. F., Williamson G., Archer D. B., Williamson M. P. Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure. 1997 May 15;5(5):647–661. doi: 10.1016/s0969-2126(97)00220-7. [DOI] [PubMed] [Google Scholar]
  20. Sumitani J., Kawaguchi T., Hattori N., Murao S., Arai M. Molecular cloning and expression of proteinaceous alpha-amylase inhibitor gene from Streptomyces nitrosporeus in Escherichia coli. Biosci Biotechnol Biochem. 1993 Aug;57(8):1243–1248. doi: 10.1271/bbb.57.1243. [DOI] [PubMed] [Google Scholar]
  21. Svensson B., Jespersen H., Sierks M. R., MacGregor E. A. Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem J. 1989 Nov 15;264(1):309–311. doi: 10.1042/bj2640309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Takekawa S., Uozumi N., Tsukagoshi N., Udaka S. Proteases involved in generation of beta- and alpha-amylases from a large amylase precursor in Bacillus polymyxa. J Bacteriol. 1991 Nov;173(21):6820–6825. doi: 10.1128/jb.173.21.6820-6825.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tomme P., Warren R. A., Gilkes N. R. Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol. 1995;37:1–81. doi: 10.1016/s0065-2911(08)60143-5. [DOI] [PubMed] [Google Scholar]
  24. Uozumi N., Sakurai K., Sasaki T., Takekawa S., Yamagata H., Tsukagoshi N., Udaka S. A single gene directs synthesis of a precursor protein with beta- and alpha-amylase activities in Bacillus polymyxa. J Bacteriol. 1989 Jan;171(1):375–382. doi: 10.1128/jb.171.1.375-382.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wiegand G., Epp O., Huber R. The crystal structure of porcine pancreatic alpha-amylase in complex with the microbial inhibitor Tendamistat. J Mol Biol. 1995 Mar 17;247(1):99–110. doi: 10.1006/jmbi.1994.0125. [DOI] [PubMed] [Google Scholar]
  26. Williamson G., Belshaw N. J., Williamson M. P. O-glycosylation in Aspergillus glucoamylase. Conformation and role in binding. Biochem J. 1992 Mar 1;282(Pt 2):423–428. doi: 10.1042/bj2820423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Williamson M. P., Le Gal-Coëffet M. F., Sorimachi K., Furniss C. S., Archer D. B., Williamson G. Function of conserved tryptophans in the Aspergillus niger glucoamylase 1 starch binding domain. Biochemistry. 1997 Jun 17;36(24):7535–7539. doi: 10.1021/bi9702896. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES