Abstract
Copper ligands of the recombinant tyrosinase from the fungus Aspergillus oryzae expressed in Saccharomyces cerevisiae or Escherichia coli were identified by site-directed mutagenesis. The recombinant protyrosinases expressed in S. cerevisiae were assayed for catalytic activities of mono-oxygenase and L-dopa oxidase at pH 5.5 after acid shock at pH 3.0. Replacements of His-63, His-84, His-93, His-290, His-294, His-332 or His-333 with asparagine resulted in mutant enzymes exhibiting no activities. The site-directed mutant Cys82Ala showed that Cys-82 was also an essential residue for the activity. We obtained homogeneous preparations of activated tyrosinases from mutated thioredoxin fusion gene products expressed in E. coli by acid shock. The copper contents of engineered mutants and wild-type enzyme expressed in E. coli were determined by atomic absorption spectrophotometry. The wild-type enzyme contained 2 g-atoms of copper/mol of the subunit. The His63Asn, His84Asn, His93Asn, His290Asn, His294Asn, His332Asn, His333Asn or Cys82Ala substitution decreased copper binding by approx. 50%, indicating that the mutants contain only approx. 1 g-atom of copper/mol of the subunit. The five mutants His63Asn, His93Asn, His290Asn, His294Asn and Cys82Ala contain only one copper ion, which is fully detectable by EPR. From the correlation of g( parallel) and (Cu)A( parallel), we deduced that the nitrogen or sulphur donors in the copper ligands should be in a square or a distorted tetrahedral geometric environment. In further atomic absorption spectrophotometry experiments, no copper atom was observed in the seven double mutants His63Asn/His290Asn, His63Asn/His294Asn, His63Asn/His332Asn, His63Asn/His333Asn, Cys82Ala/His290Asn, His84Asn/His333Asn and His93Asn/His290Asn. We propose a new structure of active sites of tyrosinase from A. oryzae: the most likely binding sites of tyrosinase for Cu(A) are His-63, His-84 and His-93, with the remaining conserved Cys-82 providing the fourth ligand. Cu(B) liganded by four histidine residues, His-290, His-294, His-332 and His-333, is identified as new binding motif of Cu(B).
Full Text
The Full Text of this article is available as a PDF (211.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adman E. T. Copper protein structures. Adv Protein Chem. 1991;42:145–197. doi: 10.1016/s0065-3233(08)60536-7. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Carter P., Bedouelle H., Winter G. Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res. 1985 Jun 25;13(12):4431–4443. doi: 10.1093/nar/13.12.4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujimoto K., Masuda K., Asada N., Ohnishi E. Purification and characterization of prophenoloxidases from pupae of Drosophila melanogaster. J Biochem. 1993 Mar;113(3):285–291. doi: 10.1093/oxfordjournals.jbchem.a124040. [DOI] [PubMed] [Google Scholar]
- Fujita Y., Uraga Y., Ichisima E. Molecular cloning and nucleotide sequence of the protyrosinase gene, melO, from Aspergillus oryzae and expression of the gene in yeast cells. Biochim Biophys Acta. 1995 Mar 14;1261(1):151–154. doi: 10.1016/0167-4781(95)00011-5. [DOI] [PubMed] [Google Scholar]
- Huber M., Lerch K. Identification of two histidines as copper ligands in Streptomyces glaucescens tyrosinase. Biochemistry. 1988 Jul 26;27(15):5610–5615. doi: 10.1021/bi00415a032. [DOI] [PubMed] [Google Scholar]
- Ichishima E., Maeba H., Amikura T., Sakata H. Multiple forms of protyrosinase from Aspergillus oryzae and their mode of activation at pH 3.0. Biochim Biophys Acta. 1984 Apr 27;786(1-2):25–31. doi: 10.1016/0167-4838(84)90149-3. [DOI] [PubMed] [Google Scholar]
- Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz E., Thompson C. J., Hopwood D. A. Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J Gen Microbiol. 1983 Sep;129(9):2703–2714. doi: 10.1099/00221287-129-9-2703. [DOI] [PubMed] [Google Scholar]
- Kupper U., Niedermann D. M., Travaglini G., Lerch K. Isolation and characterization of the tyrosinase gene from Neurospora crassa. J Biol Chem. 1989 Oct 15;264(29):17250–17258. [PubMed] [Google Scholar]
- Kwon B. S., Haq A. K., Pomerantz S. H., Halaban R. Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7473–7477. doi: 10.1073/pnas.84.21.7473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwon B. S., Wakulchik M., Haq A. K., Halaban R., Kestler D. Sequence analysis of mouse tyrosinase cDNA and the effect of melanotropin on its gene expression. Biochem Biophys Res Commun. 1988 Jun 30;153(3):1301–1309. doi: 10.1016/s0006-291x(88)81370-6. [DOI] [PubMed] [Google Scholar]
- LaVallie E. R., DiBlasio E. A., Kovacic S., Grant K. L., Schendel P. F., McCoy J. M. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y) 1993 Feb;11(2):187–193. doi: 10.1038/nbt0293-187. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lerch K., Longoni C., Jordi E. Primary structure of tyrosinase from Neurospora crassa. I. Purification and amino acid sequence of the cyanogen bromide fragments. J Biol Chem. 1982 Jun 10;257(11):6408–6413. [PubMed] [Google Scholar]
- Lerch K. Neurospora tyrosinase: structural, spectroscopic and catalytic properties. Mol Cell Biochem. 1983;52(2):125–138. doi: 10.1007/BF00224921. [DOI] [PubMed] [Google Scholar]
- Lerch K. Primary structure of tyrosinase from Neurospora crassa. II. Complete amino acid sequence and chemical structure of a tripeptide containing an unusual thioether. J Biol Chem. 1982 Jun 10;257(11):6414–6419. [PubMed] [Google Scholar]
- MASON H. S. OXIDASES. Annu Rev Biochem. 1965;34:595–634. doi: 10.1146/annurev.bi.34.070165.003115. [DOI] [PubMed] [Google Scholar]
- Rompel A., Fischer H., Meiwes D., Büldt-Karentzopoulos K., Magrini A., Eicken C., Gerdemann C., Krebs B. Substrate specificity of catechol oxidase from Lycopus europaeus and characterization of the bioproducts of enzymic caffeic acid oxidation. FEBS Lett. 1999 Feb 19;445(1):103–110. doi: 10.1016/s0014-5793(99)00106-4. [DOI] [PubMed] [Google Scholar]
- Schena M., Picard D., Yamamoto K. R. Vectors for constitutive and inducible gene expression in yeast. Methods Enzymol. 1991;194:389–398. doi: 10.1016/0076-6879(91)94029-c. [DOI] [PubMed] [Google Scholar]
- Shibahara S., Okinaga S., Tomita Y., Takeda A., Yamamoto H., Sato M., Takeuchi T. A point mutation in the tyrosinase gene of BALB/c albino mouse causing the cysteine----serine substitution at position 85. Eur J Biochem. 1990 Apr 30;189(2):455–461. doi: 10.1111/j.1432-1033.1990.tb15510.x. [DOI] [PubMed] [Google Scholar]
- Shibahara S., Tomita Y., Sakakura T., Nager C., Chaudhuri B., Müller R. Cloning and expression of cDNA encoding mouse tyrosinase. Nucleic Acids Res. 1986 Mar 25;14(6):2413–2427. doi: 10.1093/nar/14.6.2413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spritz R. A., Ho L., Furumura M., Hearing V. J., Jr Mutational analysis of copper binding by human tyrosinase. J Invest Dermatol. 1997 Aug;109(2):207–212. doi: 10.1111/1523-1747.ep12319351. [DOI] [PubMed] [Google Scholar]
- Tanaka T., Yada R. Y. Expression of soluble cloned porcine pepsinogen A in Escherichia coli. Biochem J. 1996 Apr 15;315(Pt 2):443–446. doi: 10.1042/bj3150443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang J. T., Wu C. S., Martinez H. M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi: 10.1016/0076-6879(86)30013-2. [DOI] [PubMed] [Google Scholar]
- van Gelder C. W., Flurkey W. H., Wichers H. J. Sequence and structural features of plant and fungal tyrosinases. Phytochemistry. 1997 Aug;45(7):1309–1323. doi: 10.1016/s0031-9422(97)00186-6. [DOI] [PubMed] [Google Scholar]