Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Sep 15;350(Pt 3):637–643.

Targeting of the zymogen-granule protein syncollin in AR42J and AtT-20 cells.

A Hodel 1, J M Edwardson 1
PMCID: PMC1221292  PMID: 10970774

Abstract

Syncollin is a 13-kDa protein associated with the membranes of pancreatic zymogen granules. Here we determine the in situ localization of syncollin in pancreatic acinar cells from adult and neonatal rats, and study the targeting of green fluorescent protein-(GFP-) and His(6)-tagged syncollin chimaeras in model exocrine and endocrine secretory cells. Immunocytochemical analysis of the distribution of syncollin in fully differentiated and neonatal acinar cells revealed a granular pattern that corresponded with that of the zymogen-granule markers synaptobrevin 2 and amylase. In fully differentiated acinar cells syncollin-positive vesicles were detected in the apical region of the cells, whereas in neonatal acinar cells they were found clustered near the cell nucleus. Both GFP- and His(6)-tagged syncollin entered the secretory pathway when transiently expressed in AR42J or AtT-20 cells. Syncollin-GFP was found predominantly in amylase-positive granules in AR42J cells and in adrenocorticotrophic hormone- (ACTH-) positive granules in AtT-20 cells. Syncollin-GFP was also present in the Golgi complex in AR42J cells. Syncollin-His(6) became localized in ACTH-containing granules in the neuritic processes of AtT-20 cells. In AR42J cells syncollin-His(6) did not co-localize with amylase, but was detected in acidic vesicles. These results show that the exocrine protein syncollin contains intrinsic cell-type-independent targeting information that is retained in both exocrine and endocrine cells after fusion to the GFP tag. In contrast, His(6)-tagged syncollin is efficiently targeted to secretory granules only in AtT-20 cells and not in AR42J cells.

Full Text

The Full Text of this article is available as a PDF (244.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An S. J., Hansen N. J., Hodel A., Jahn R., Edwardson J. M. Analysis of the association of syncollin with the membrane of the pancreatic zymogen granule. J Biol Chem. 2000 Apr 14;275(15):11306–11311. doi: 10.1074/jbc.275.15.11306. [DOI] [PubMed] [Google Scholar]
  2. Anderson K. L., McNiven M. A. Vesicle dynamics during regulated secretion in a novel pancreatic acinar cell in vitro model. Eur J Cell Biol. 1995 Jan;66(1):25–38. [PubMed] [Google Scholar]
  3. Arvan P., Castle D. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J. 1998 Jun 15;332(Pt 3):593–610. doi: 10.1042/bj3320593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burgess T. L., Craik C. S., Kelly R. B. The exocrine protein trypsinogen is targeted into the secretory granules of an endocrine cell line: studies by gene transfer. J Cell Biol. 1985 Aug;101(2):639–645. doi: 10.1083/jcb.101.2.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castle A. M., Huang A. Y., Castle J. D. Immunoglobulin-derived polypeptides enter the regulated secretory pathway in AtT-20 cells. FEBS Lett. 1998 Nov 20;439(3):341–345. doi: 10.1016/s0014-5793(98)01398-2. [DOI] [PubMed] [Google Scholar]
  6. Castle A. M., Huang A. Y., Castle J. D. Passive sorting in maturing granules of AtT-20 cells: the entry and exit of salivary amylase and proline-rich protein. J Cell Biol. 1997 Jul 14;138(1):45–54. doi: 10.1083/jcb.138.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Castle A. M., Schwarzbauer J. E., Wright R. L., Castle J. D. Differential targeting of recombinant fibronectins in AtT-20 cells based on their efficiency of aggregation. J Cell Sci. 1995 Dec;108(Pt 12):3827–3837. doi: 10.1242/jcs.108.12.3827. [DOI] [PubMed] [Google Scholar]
  8. Colomer V., Lal K., Hoops T. C., Rindler M. J. Exocrine granule specific packaging signals are present in the polypeptide moiety of the pancreatic granule membrane protein GP2 and in amylase: implications for protein targeting to secretory granules. EMBO J. 1994 Aug 15;13(16):3711–3719. doi: 10.1002/j.1460-2075.1994.tb06680.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cool D. R., Fenger M., Snell C. R., Loh Y. P. Identification of the sorting signal motif within pro-opiomelanocortin for the regulated secretory pathway. J Biol Chem. 1995 Apr 14;270(15):8723–8729. doi: 10.1074/jbc.270.15.8723. [DOI] [PubMed] [Google Scholar]
  10. Dickinson C. J., Takeuchi T., Guo Y. J., Stadler B. T., Yamada T. Expression and processing of prohormones in nonendocrine cells. Am J Physiol. 1993 Mar;264(3 Pt 1):G553–G560. doi: 10.1152/ajpgi.1993.264.3.G553. [DOI] [PubMed] [Google Scholar]
  11. Dunn W. A., Jr Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J Cell Biol. 1990 Jun;110(6):1935–1945. doi: 10.1083/jcb.110.6.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Edwardson J. M., An S., Jahn R. The secretory granule protein syncollin binds to syntaxin in a Ca2(+)-sensitive manner. Cell. 1997 Jul 25;90(2):325–333. doi: 10.1016/s0092-8674(00)80340-2. [DOI] [PubMed] [Google Scholar]
  13. Ermak T. H., Rothman S. S. Zymogen granules of pancreas decrease in size in response to feeding. Cell Tissue Res. 1981;214(1):51–66. doi: 10.1007/BF00235144. [DOI] [PubMed] [Google Scholar]
  14. Fennewald S. M., Hamilton R. L., Jr, Gordon J. I. Expression of human preproapo AI and pre(delta pro)apoAI in a murine pituitary cell line (AtT-20). A comparison of their intracellular compartmentalization and lipid affiliation. J Biol Chem. 1988 Oct 25;263(30):15568–15577. [PubMed] [Google Scholar]
  15. Field M. C., Moran P., Li W., Keller G. A., Caras I. W. Retention and degradation of proteins containing an uncleaved glycosylphosphatidylinositol signal. J Biol Chem. 1994 Apr 8;269(14):10830–10837. [PubMed] [Google Scholar]
  16. Gaisano H. Y., Huang X., Sheu L., Ghai M., Newgard C. B., Trinh K. Y., Trimble W. S. Snare protein expression and adenoviral transfection of amphicrine AR42J. Biochem Biophys Res Commun. 1999 Jul 14;260(3):781–784. doi: 10.1006/bbrc.1999.0987. [DOI] [PubMed] [Google Scholar]
  17. Gaisano H. Y., Sheu L., Foskett J. K., Trimble W. S. Tetanus toxin light chain cleaves a vesicle-associated membrane protein (VAMP) isoform 2 in rat pancreatic zymogen granules and inhibits enzyme secretion. J Biol Chem. 1994 Jun 24;269(25):17062–17066. [PubMed] [Google Scholar]
  18. Gorr S. U., Hamilton J. W., Cohn D. V. Regulated, but not constitutive, secretory proteins bind porcine chymotrypsinogen. J Biol Chem. 1992 Oct 25;267(30):21595–21600. [PubMed] [Google Scholar]
  19. Guasch R. M., Guerri C., O'Connor J. E. Flow cytometric analysis of concanavalin A binding to isolated Golgi fractions from rat liver. Exp Cell Res. 1993 Jul;207(1):136–141. doi: 10.1006/excr.1993.1172. [DOI] [PubMed] [Google Scholar]
  20. Hansen N. J., Antonin W., Edwardson J. M. Identification of SNAREs involved in regulated exocytosis in the pancreatic acinar cell. J Biol Chem. 1999 Aug 6;274(32):22871–22876. doi: 10.1074/jbc.274.32.22871. [DOI] [PubMed] [Google Scholar]
  21. Hirschberg K., Miller C. M., Ellenberg J., Presley J. F., Siggia E. D., Phair R. D., Lippincott-Schwartz J. Kinetic analysis of secretory protein traffic and characterization of golgi to plasma membrane transport intermediates in living cells. J Cell Biol. 1998 Dec 14;143(6):1485–1503. doi: 10.1083/jcb.143.6.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hoops T. C., Ivanov I., Cui Z., Colomer-Gould V., Rindler M. J. Incorporation of the pancreatic membrane protein GP-2 into secretory granules in exocrine but not endocrine cells. J Biol Chem. 1993 Dec 5;268(34):25694–25705. [PubMed] [Google Scholar]
  23. Klumperman J., Kuliawat R., Griffith J. M., Geuze H. J., Arvan P. Mannose 6-phosphate receptors are sorted from immature secretory granules via adaptor protein AP-1, clathrin, and syntaxin 6-positive vesicles. J Cell Biol. 1998 Apr 20;141(2):359–371. doi: 10.1083/jcb.141.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lang T., Wacker I., Steyer J., Kaether C., Wunderlich I., Soldati T., Gerdes H. H., Almers W. Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron. 1997 Jun;18(6):857–863. doi: 10.1016/s0896-6273(00)80325-6. [DOI] [PubMed] [Google Scholar]
  25. Luzio J. P., Brake B., Banting G., Howell K. E., Braghetta P., Stanley K. K. Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network (TGN38). Biochem J. 1990 Aug 15;270(1):97–102. doi: 10.1042/bj2700097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Milgram S. L., Johnson R. C., Mains R. E. Expression of individual forms of peptidylglycine alpha-amidating monooxygenase in AtT-20 cells: endoproteolytic processing and routing to secretory granules. J Cell Biol. 1992 May;117(4):717–728. doi: 10.1083/jcb.117.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moore H. P., Kelly R. B. Secretory protein targeting in a pituitary cell line: differential transport of foreign secretory proteins to distinct secretory pathways. J Cell Biol. 1985 Nov;101(5 Pt 1):1773–1781. doi: 10.1083/jcb.101.5.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moore H. P., Walker M. D., Lee F., Kelly R. B. Expressing a human proinsulin cDNA in a mouse ACTH-secreting cell. Intracellular storage, proteolytic processing, and secretion on stimulation. Cell. 1983 Dec;35(2 Pt 1):531–538. doi: 10.1016/0092-8674(83)90187-3. [DOI] [PubMed] [Google Scholar]
  29. Moran P., Caras I. W. Proteins containing an uncleaved signal for glycophosphatidylinositol membrane anchor attachment are retained in a post-ER compartment. J Cell Biol. 1992 Nov;119(4):763–772. doi: 10.1083/jcb.119.4.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nakamura N., Rabouille C., Watson R., Nilsson T., Hui N., Slusarewicz P., Kreis T. E., Warren G. Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol. 1995 Dec;131(6 Pt 2):1715–1726. doi: 10.1083/jcb.131.6.1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Natori S., King A., Hellwig A., Weiss U., Iguchi H., Tsuchiya B., Kameya T., Takayanagi R., Nawata H., Huttner W. B. Chromogranin B (secretogranin I), a neuroendocrine-regulated secretory protein, is sorted to exocrine secretory granules in transgenic mice. EMBO J. 1998 Jun 15;17(12):3277–3289. doi: 10.1093/emboj/17.12.3277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pouli A. E., Kennedy H. J., Schofield J. G., Rutter G. A. Insulin targeting to the regulated secretory pathway after fusion with green fluorescent protein and firefly luciferase. Biochem J. 1998 Apr 15;331(Pt 2):669–675. doi: 10.1042/bj3310669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rabouille C., Strous G. J., Crapo J. D., Geuze H. J., Slot J. W. The differential degradation of two cytosolic proteins as a tool to monitor autophagy in hepatocytes by immunocytochemistry. J Cell Biol. 1993 Feb;120(4):897–908. doi: 10.1083/jcb.120.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rees S., Coote J., Stables J., Goodson S., Harris S., Lee M. G. Bicistronic vector for the creation of stable mammalian cell lines that predisposes all antibiotic-resistant cells to express recombinant protein. Biotechniques. 1996 Jan;20(1):102-4, 106, 108-10. doi: 10.2144/96201st05. [DOI] [PubMed] [Google Scholar]
  35. Rivas R. J., Moore H. P. Spatial segregation of the regulated and constitutive secretory pathways. J Cell Biol. 1989 Jul;109(1):51–60. doi: 10.1083/jcb.109.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schmidt W. K., Moore H. P. Synthesis and targeting of insulin-like growth factor-I to the hormone storage granules in an endocrine cell line. J Biol Chem. 1994 Oct 28;269(43):27115–27124. [PubMed] [Google Scholar]
  37. Tan S., Hooi S. C. Syncollin is differentially expressed in rat proximal small intestine and regulated by feeding behavior. Am J Physiol Gastrointest Liver Physiol. 2000 Feb;278(2):G308–G320. doi: 10.1152/ajpgi.2000.278.2.G308. [DOI] [PubMed] [Google Scholar]
  38. Tooze J., Hollinshead M., Ludwig T., Howell K., Hoflack B., Kern H. In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J Cell Biol. 1990 Aug;111(2):329–345. doi: 10.1083/jcb.111.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wagner D. D., Saffaripour S., Bonfanti R., Sadler J. E., Cramer E. M., Chapman B., Mayadas T. N. Induction of specific storage organelles by von Willebrand factor propolypeptide. Cell. 1991 Jan 25;64(2):403–413. doi: 10.1016/0092-8674(91)90648-i. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES