Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Sep 15;350(Pt 3):671–676.

Function of the N-terminal propeptide of an aminopeptidase from Vibrio proteolyticus.

Z Z Zhang 1, S Nirasawa 1, Y Nakajima 1, M Yoshida 1, K Hayashi 1
PMCID: PMC1221296  PMID: 10970778

Abstract

An aminopeptidase from Vibrio proteolyticus was translated as a preproprotein consisting of four domains: a signal peptide, an N-terminal propeptide, a mature region and a C-terminal propeptide. Protein expression and analysis of the activity results demonstrated that the N-terminal propeptide was essential to the formation of the active enzyme in Escherichia coli. Urea dissolution of inclusion bodies and dialysis indicated that the N-terminal propeptide could facilitate the correct folding of the enzyme in vitro. Using L-Leu-p-nitroanilide as the substrate, the kinetic parameters (k(cat) and K(m)) of the pro-aminopeptidase and processed aminopeptidases were analysed. The results suggested that the N-terminal propeptide inhibited enzyme activity of the mature region. In contrast, the C-terminal propeptide did not show evidence of forming an active enzyme, of correctly folding in vitro or of inhibiting the active region.

Full Text

The Full Text of this article is available as a PDF (177.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker D., Sohl J. L., Agard D. A. A protein-folding reaction under kinetic control. Nature. 1992 Mar 19;356(6366):263–265. doi: 10.1038/356263a0. [DOI] [PubMed] [Google Scholar]
  2. Bryan P., Wang L., Hoskins J., Ruvinov S., Strausberg S., Alexander P., Almog O., Gilliland G., Gallagher T. Catalysis of a protein folding reaction: mechanistic implications of the 2.0 A structure of the subtilisin-prodomain complex. Biochemistry. 1995 Aug 15;34(32):10310–10318. doi: 10.1021/bi00032a026. [DOI] [PubMed] [Google Scholar]
  3. Chen G., Edwards T., D'souza V. M., Holz R. C. Mechanistic studies on the aminopeptidase from Aeromonas proteolytica: a two-metal ion mechanism for peptide hydrolysis. Biochemistry. 1997 Apr 8;36(14):4278–4286. doi: 10.1021/bi9618676. [DOI] [PubMed] [Google Scholar]
  4. Chevrier B., Schalk C., D'Orchymont H., Rondeau J. M., Moras D., Tarnus C. Crystal structure of Aeromonas proteolytica aminopeptidase: a prototypical member of the co-catalytic zinc enzyme family. Structure. 1994 Apr 15;2(4):283–291. doi: 10.1016/s0969-2126(00)00030-7. [DOI] [PubMed] [Google Scholar]
  5. Deane S. M., Robb F. T., Robb S. M., Woods D. R. Nucleotide sequence of the Vibrio alginolyticus calcium-dependent, detergent-resistant alkaline serine exoprotease A. Gene. 1989;76(2):281–288. doi: 10.1016/0378-1119(89)90168-6. [DOI] [PubMed] [Google Scholar]
  6. Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967 Mar;1(1):80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
  7. Gonzales T., Robert-Baudouy J. Bacterial aminopeptidases: properties and functions. FEMS Microbiol Rev. 1996 Jul;18(4):319–344. doi: 10.1111/j.1574-6976.1996.tb00247.x. [DOI] [PubMed] [Google Scholar]
  8. Groves W. E., Davis F. C., Jr, Sells B. H. Spectrophotometric determination of microgram quantities of protein without nucleic acid interference. Anal Biochem. 1968 Feb;22(2):195–210. doi: 10.1016/0003-2697(68)90307-2. [DOI] [PubMed] [Google Scholar]
  9. Guasch A., Coll M., Avilés F. X., Huber R. Three-dimensional structure of porcine pancreatic procarboxypeptidase A. A comparison of the A and B zymogens and their determinants for inhibition and activation. J Mol Biol. 1992 Mar 5;224(1):141–157. doi: 10.1016/0022-2836(92)90581-4. [DOI] [PubMed] [Google Scholar]
  10. Guenet C., Lepage P., Harris B. A. Isolation of the leucine aminopeptidase gene from Aeromonas proteolytica. Evidence for an enzyme precursor. J Biol Chem. 1992 Apr 25;267(12):8390–8395. [PubMed] [Google Scholar]
  11. Häse C. C., Finkelstein R. A. Cloning and nucleotide sequence of the Vibrio cholerae hemagglutinin/protease (HA/protease) gene and construction of an HA/protease-negative strain. J Bacteriol. 1991 Jun;173(11):3311–3317. doi: 10.1128/jb.173.11.3311-3317.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Khan A. R., James M. N. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci. 1998 Apr;7(4):815–836. doi: 10.1002/pro.5560070401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Merkel J. R., Traganza E. D., Mukherjee B. B., Griffin T. B., Prescott J. M. Proteolytic activity and general characteristics of a marine bacterium, Aeromonas proteolytica sp. N. J Bacteriol. 1964 May;87(5):1227–1233. doi: 10.1128/jb.87.5.1227-1233.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nirasawa S., Nakajima Y., Zhang Z. Z., Yoshida M., Hayashi K. Intramolecular chaperone and inhibitor activities of a propeptide from a bacterial zinc aminopeptidase. Biochem J. 1999 Jul 1;341(Pt 1):25–31. [PMC free article] [PubMed] [Google Scholar]
  15. Nirasawa S., Nakajima Y., Zhang Z., Yoshida M., Hayashi K. Molecular cloning and expression in Escherichia coli of the extracellular endoprotease of Aeromonas caviae T-64, a pro-aminopeptidase processing enzyme(1). Biochim Biophys Acta. 1999 Aug 17;1433(1-2):335–342. doi: 10.1016/s0167-4838(99)00158-2. [DOI] [PubMed] [Google Scholar]
  16. Schalk C., Remy J. M., Chevrier B., Moras D., Tarnus C. Rapid purification of the Aeromonas proteolytica aminopeptidase: crystallization and preliminary X-ray data. Arch Biochem Biophys. 1992 Apr;294(1):91–97. doi: 10.1016/0003-9861(92)90141-i. [DOI] [PubMed] [Google Scholar]
  17. Tao K., Stearns N. A., Dong J., Wu Q. L., Sahagian G. G. The proregion of cathepsin L is required for proper folding, stability, and ER exit. Arch Biochem Biophys. 1994 May 15;311(1):19–27. doi: 10.1006/abbi.1994.1203. [DOI] [PubMed] [Google Scholar]
  18. Van Heeke G., Denslow S., Watkins J. R., Wilson K. J., Wagner F. W. Cloning and nucleotide sequence of the Vibrio proteolyticus aminopeptidase gene. Biochim Biophys Acta. 1992 Jul 15;1131(3):337–340. doi: 10.1016/0167-4781(92)90037-z. [DOI] [PubMed] [Google Scholar]
  19. Wagner F. W., Wilkes S. H., Prescott J. M. Specificity of Aeromonas aminopeptidase toward amino acid amides and dipeptides. J Biol Chem. 1972 Feb 25;247(4):1208–1210. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES