Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Sep 15;350(Pt 3):693–699.

A simple method for measuring the relative force exerted by myosin on actin filaments in the in vitro motility assay: evidence that tropomyosin and troponin increase force in single thin filaments.

W Bing 1, A Knott 1, S B Marston 1
PMCID: PMC1221299  PMID: 10970781

Abstract

We have studied the effect of an internal load on the movement of actin filaments over a bed of heavy meromyosin (HMM) in the in vitro motility assay. Immobilized alpha-actinin can bind to actin filaments reversibly and ultimately stop the filaments from moving. Above a critical concentration of alpha-actinin, thin filament velocity rapidly diminished to zero. The fraction of thin motile filaments decreased linearly to zero with increasing alpha-actinin concentration. The concentration of alpha-actinin needed to stop all filaments from moving (0.8 microg/ml with actin) was very consistent both within and between experiments. In the present study we have defined the 'index of retardation' as the concentration of alpha-actinin needed to stop all filament movement, and we propose that this index is a measure of the isometric force exerted by HMM on actin filaments. When we measured the effect of immobilized alpha-actinin on motility in the presence of 10 mM P(i) we found that the index of retardation was 0.62+/-0.07 (n=3) times that in the absence of P(i). This observation is in agreement with the reduction of isometric tension in chemically-skinned muscle due to P(i). In a series of comparative experiments we observed that tropomyosin and troponin increase the index of retardation and that the degree of increase depends upon the tropomyosin isoform studied. The index of retardation of actin is increased 1.8-fold by skeletal-muscle tropomyosin, and 3-fold by both cardiac-muscle and smooth-muscle tropomyosin. In the presence of troponin the index of retardation is 2.9-3.4-fold greater than that of actin with all tropomyosin isoforms.

Full Text

The Full Text of this article is available as a PDF (199.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bing W., Fraser I. D., Marston S. B. Troponin I and troponin T interact with troponin C to produce different Ca2+-dependent effects on actin-tropomyosin filament motility. Biochem J. 1997 Oct 15;327(Pt 2):335–340. doi: 10.1042/bj3270335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bing W., Redwood C. S., Purcell I. F., Esposito G., Watkins H., Marston S. B. Effects of two hypertrophic cardiomyopathy mutations in alpha-tropomyosin, Asp175Asn and Glu180Gly, on Ca2+ regulation of thin filament motility. Biochem Biophys Res Commun. 1997 Jul 30;236(3):760–764. doi: 10.1006/bbrc.1997.7045. [DOI] [PubMed] [Google Scholar]
  3. Cooke R., Pate E. The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J. 1985 Nov;48(5):789–798. doi: 10.1016/S0006-3495(85)83837-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fraser I. D., Marston S. B. In vitro motility analysis of actin-tropomyosin regulation by troponin and calcium. The thin filament is switched as a single cooperative unit. J Biol Chem. 1995 Apr 7;270(14):7836–7841. doi: 10.1074/jbc.270.14.7836. [DOI] [PubMed] [Google Scholar]
  5. Fraser I. D., Marston S. B. In vitro motility analysis of smooth muscle caldesmon control of actin-tropomyosin filament movement. J Biol Chem. 1995 Aug 25;270(34):19688–19693. doi: 10.1074/jbc.270.34.19688. [DOI] [PubMed] [Google Scholar]
  6. Geeves M. A., Lehrer S. S. Dynamics of the muscle thin filament regulatory switch: the size of the cooperative unit. Biophys J. 1994 Jul;67(1):273–282. doi: 10.1016/S0006-3495(94)80478-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gordon A. M., LaMadrid M. A., Chen Y., Luo Z., Chase P. B. Calcium regulation of skeletal muscle thin filament motility in vitro. Biophys J. 1997 Mar;72(3):1295–1307. doi: 10.1016/S0006-3495(97)78776-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guilford W. H., Dupuis D. E., Kennedy G., Wu J., Patlak J. B., Warshaw D. M. Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys J. 1997 Mar;72(3):1006–1021. doi: 10.1016/S0006-3495(97)78753-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haeberle J. R. Calponin decreases the rate of cross-bridge cycling and increases maximum force production by smooth muscle myosin in an in vitro motility assay. J Biol Chem. 1994 Apr 29;269(17):12424–12431. [PubMed] [Google Scholar]
  10. Haeberle J. R., Hemric M. E. A model for the coregulation of smooth muscle actomyosin by caldesmon, calponin, tropomyosin, and the myosin regulatory light chain. Can J Physiol Pharmacol. 1994 Nov;72(11):1400–1409. doi: 10.1139/y94-202. [DOI] [PubMed] [Google Scholar]
  11. Haeberle J. R., Hemric M. E. Are actin filaments moving under unloaded conditions in the in vitro motility assay? Biophys J. 1995 Apr;68(4 Suppl):306S–311S. [PMC free article] [PubMed] [Google Scholar]
  12. Homsher E., Kim B., Bobkova A., Tobacman L. S. Calcium regulation of thin filament movement in an in vitro motility assay. Biophys J. 1996 Apr;70(4):1881–1892. doi: 10.1016/S0006-3495(96)79753-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Janson L. W., Sellers J. R., Taylor D. L. Actin-binding proteins regulate the work performed by myosin II motors on single actin filaments. Cell Motil Cytoskeleton. 1992;22(4):274–280. doi: 10.1002/cm.970220407. [DOI] [PubMed] [Google Scholar]
  14. Kron S. J., Toyoshima Y. Y., Uyeda T. Q., Spudich J. A. Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol. 1991;196:399–416. doi: 10.1016/0076-6879(91)96035-p. [DOI] [PubMed] [Google Scholar]
  15. Lauzon A. M., Tyska M. J., Rovner A. S., Freyzon Y., Warshaw D. M., Trybus K. M. A 7-amino-acid insert in the heavy chain nucleotide binding loop alters the kinetics of smooth muscle myosin in the laser trap. J Muscle Res Cell Motil. 1998 Nov;19(8):825–837. doi: 10.1023/a:1005489501357. [DOI] [PubMed] [Google Scholar]
  16. Lehrer S. S., Geeves M. A. The muscle thin filament as a classical cooperative/allosteric regulatory system. J Mol Biol. 1998 Apr 17;277(5):1081–1089. doi: 10.1006/jmbi.1998.1654. [DOI] [PubMed] [Google Scholar]
  17. Lehrer S. S. The regulatory switch of the muscle thin filament: Ca2+ or myosin heads? J Muscle Res Cell Motil. 1994 Jun;15(3):232–236. doi: 10.1007/BF00123476. [DOI] [PubMed] [Google Scholar]
  18. Margossian S. S., Lowey S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol. 1982;85(Pt B):55–71. doi: 10.1016/0076-6879(82)85009-x. [DOI] [PubMed] [Google Scholar]
  19. Marston S. B., Fraser I. D., Bing W., Roper G. A simple method for automatic tracking of actin filaments in the motility assay. J Muscle Res Cell Motil. 1996 Aug;17(4):497–506. doi: 10.1007/BF00123365. [DOI] [PubMed] [Google Scholar]
  20. Marston S. B., Redwood C. S. Inhibition of actin-tropomyosin activation of myosin MgATPase activity by the smooth muscle regulatory protein caldesmon. J Biol Chem. 1992 Aug 25;267(24):16796–16800. [PubMed] [Google Scholar]
  21. Marston S. Ca(2+)-dependent protein switches in actomyosin based contractile systems. Int J Biochem Cell Biol. 1995 Feb;27(2):97–108. doi: 10.1016/1357-2725(94)00080-u. [DOI] [PubMed] [Google Scholar]
  22. Maytum R., Lehrer S. S., Geeves M. A. Cooperativity and switching within the three-state model of muscle regulation. Biochemistry. 1999 Jan 19;38(3):1102–1110. doi: 10.1021/bi981603e. [DOI] [PubMed] [Google Scholar]
  23. Millar N. C., Homsher E. The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers. A steady-state and transient kinetic study. J Biol Chem. 1990 Nov 25;265(33):20234–20240. [PubMed] [Google Scholar]
  24. Molloy J. E., Burns J. E., Sparrow J. C., Tregear R. T., Kendrick-Jones J., White D. C. Single-molecule mechanics of heavy meromyosin and S1 interacting with rabbit or Drosophila actins using optical tweezers. Biophys J. 1995 Apr;68(4 Suppl):298S–305S. [PMC free article] [PubMed] [Google Scholar]
  25. Nagashima H., Asakura S. Studies on co-operative properties of tropomyosin-actin and tropomyosin-troponin-actin complexes by the use of N-ethylmaleimide-treated and untreated species of myosin subfragment 1. J Mol Biol. 1982 Mar 15;155(4):409–428. doi: 10.1016/0022-2836(82)90479-x. [DOI] [PubMed] [Google Scholar]
  26. Pate E., Franks-Skiba K., Cooke R. Depletion of phosphate in active muscle fibers probes actomyosin states within the powerstroke. Biophys J. 1998 Jan;74(1):369–380. doi: 10.1016/S0006-3495(98)77794-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Potter J. D. Preparation of troponin and its subunits. Methods Enzymol. 1982;85(Pt B):241–263. doi: 10.1016/0076-6879(82)85024-6. [DOI] [PubMed] [Google Scholar]
  28. Purcell I. F., Bing W., Marston S. B. Functional analysis of human cardiac troponin by the in vitro motility assay: comparison of adult, foetal and failing hearts. Cardiovasc Res. 1999 Sep;43(4):884–891. doi: 10.1016/s0008-6363(99)00123-6. [DOI] [PubMed] [Google Scholar]
  29. Redwood C., Lohmann K., Bing W., Esposito G. M., Elliott K., Abdulrazzak H., Knott A., Purcell I., Marston S., Watkins H. Investigation of a truncated cardiac troponin T that causes familial hypertrophic cardiomyopathy: Ca(2+) regulatory properties of reconstituted thin filaments depend on the ratio of mutant to wild-type protein. Circ Res. 2000 Jun 9;86(11):1146–1152. doi: 10.1161/01.res.86.11.1146. [DOI] [PubMed] [Google Scholar]
  30. Swartz D. R., Moss R. L. Influence of a strong-binding myosin analogue on calcium-sensitive mechanical properties of skinned skeletal muscle fibers. J Biol Chem. 1992 Oct 5;267(28):20497–20506. [PubMed] [Google Scholar]
  31. VanBuren P., Harris D. E., Alpert N. R., Warshaw D. M. Cardiac V1 and V3 myosins differ in their hydrolytic and mechanical activities in vitro. Circ Res. 1995 Aug;77(2):439–444. doi: 10.1161/01.res.77.2.439. [DOI] [PubMed] [Google Scholar]
  32. VanBuren P., Palmiter K. A., Warshaw D. M. Tropomyosin directly modulates actomyosin mechanical performance at the level of a single actin filament. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12488–12493. doi: 10.1073/pnas.96.22.12488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. VanBuren P., Work S. S., Warshaw D. M. Enhanced force generation by smooth muscle myosin in vitro. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):202–205. doi: 10.1073/pnas.91.1.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Warshaw D. M., Desrosiers J. M., Work S. S., Trybus K. M. Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J Cell Biol. 1990 Aug;111(2):453–463. doi: 10.1083/jcb.111.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES