Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Sep 15;350(Pt 3):709–716.

Oxygen tension limits nitric oxide synthesis by activated macrophages.

C C McCormick 1, W P Li 1, M Calero 1
PMCID: PMC1221301  PMID: 10970783

Abstract

Previous studies have established that constitutive calcium-dependent ('low-output') nitric oxide synthase (NOS) is regulated by oxygen tension. We have investigated the role of oxygen tension in the synthesis of NO by the 'high-output' calcium-independent NOS in activated macrophages. Hypoxia increased macrophage NOS gene expression in the presence of one additional activator, such as lipopolysaccharide or interferon-gamma, but not in the presence of both. Hypoxia markedly reduced the synthesis of NO by activated macrophages (as measured by accumulation of nitrite and citrulline), such that, at 1% oxygen tension, NO accumulation was reduced by 80-90%. The apparent K(m) for oxygen calculated from cells exposed to a range of oxygen tensions was found to be 10.8%, or 137 microM, O(2) This value is considerably higher than the oxygen tension in tissues, and is virtually identical to that reported recently for purified recombinant macrophage NOS. The decrease in NO synthesis did not appear to be due to diminished arginine or cofactor availability, since arginine transport and NO synthesis during recovery in normoxia were normal. Analysis of NO synthesis during hypoxia as a function of extracellular arginine indicated that an altered V(max), but not K(m)(Arg), accounted for the observed decrease in NO synthesis. We conclude that oxygen tension regulates the synthesis of NO in macrophages by a mechanism similar to that described previously for the calcium-dependent low-output NOS. Our data suggest that oxygen tension may be an important physiological regulator of macrophage NO synthesis in vivo.

Full Text

The Full Text of this article is available as a PDF (174.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu-Soud H. M., Rousseau D. L., Stuehr D. J. Nitric oxide binding to the heme of neuronal nitric-oxide synthase links its activity to changes in oxygen tension. J Biol Chem. 1996 Dec 20;271(51):32515–32518. doi: 10.1074/jbc.271.51.32515. [DOI] [PubMed] [Google Scholar]
  2. Archer S. L., Freude K. A., Shultz P. J. Effect of graded hypoxia on the induction and function of inducible nitric oxide synthase in rat mesangial cells. Circ Res. 1995 Jul;77(1):21–28. doi: 10.1161/01.res.77.1.21. [DOI] [PubMed] [Google Scholar]
  3. Block E. R., Herrera H., Couch M. Hypoxia inhibits L-arginine uptake by pulmonary artery endothelial cells. Am J Physiol. 1995 Nov;269(5 Pt 1):L574–L580. doi: 10.1152/ajplung.1995.269.5.L574. [DOI] [PubMed] [Google Scholar]
  4. Bogle R. G., Baydoun A. R., Pearson J. D., Moncada S., Mann G. E. L-arginine transport is increased in macrophages generating nitric oxide. Biochem J. 1992 May 15;284(Pt 1):15–18. doi: 10.1042/bj2840015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bunn H. F., Poyton R. O. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev. 1996 Jul;76(3):839–885. doi: 10.1152/physrev.1996.76.3.839. [DOI] [PubMed] [Google Scholar]
  6. Dweik R. A., Laskowski D., Abu-Soud H. M., Kaneko F., Hutte R., Stuehr D. J., Erzurum S. C. Nitric oxide synthesis in the lung. Regulation by oxygen through a kinetic mechanism. J Clin Invest. 1998 Feb 1;101(3):660–666. doi: 10.1172/JCI1378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Förstermann U., Boissel J. P., Kleinert H. Expressional control of the 'constitutive' isoforms of nitric oxide synthase (NOS I and NOS III). FASEB J. 1998 Jul;12(10):773–790. [PubMed] [Google Scholar]
  8. Granger D. L., Hibbs J. B., Jr, Perfect J. R., Durack D. T. Metabolic fate of L-arginine in relation to microbiostatic capability of murine macrophages. J Clin Invest. 1990 Jan;85(1):264–273. doi: 10.1172/JCI114422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  10. Iyengar R., Stuehr D. J., Marletta M. A. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6369–6373. doi: 10.1073/pnas.84.18.6369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kim N., Vardi Y., Padma-Nathan H., Daley J., Goldstein I., Saenz de Tejada I. Oxygen tension regulates the nitric oxide pathway. Physiological role in penile erection. J Clin Invest. 1993 Feb;91(2):437–442. doi: 10.1172/JCI116220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lin A. W., Chang C. C., McCormick C. C. Molecular cloning and expression of an avian macrophage nitric-oxide synthase cDNA and the analysis of the genomic 5'-flanking region. J Biol Chem. 1996 May 17;271(20):11911–11919. doi: 10.1074/jbc.271.20.11911. [DOI] [PubMed] [Google Scholar]
  13. MacMicking J., Xie Q. W., Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–350. doi: 10.1146/annurev.immunol.15.1.323. [DOI] [PubMed] [Google Scholar]
  14. Mayer B., Hemmens B. Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci. 1997 Dec;22(12):477–481. doi: 10.1016/s0968-0004(97)01147-x. [DOI] [PubMed] [Google Scholar]
  15. McDonald K. K., Zharikov S., Block E. R., Kilberg M. S. A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxide synthase may explain the "arginine paradox". J Biol Chem. 1997 Dec 12;272(50):31213–31216. doi: 10.1074/jbc.272.50.31213. [DOI] [PubMed] [Google Scholar]
  16. Melillo G., Musso T., Sica A., Taylor L. S., Cox G. W., Varesio L. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med. 1995 Dec 1;182(6):1683–1693. doi: 10.1084/jem.182.6.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Melillo G., Taylor L. S., Brooks A., Cox G. W., Varesio L. Regulation of inducible nitric oxide synthase expression in IFN-gamma-treated murine macrophages cultured under hypoxic conditions. J Immunol. 1996 Sep 15;157(6):2638–2644. [PubMed] [Google Scholar]
  18. Morris S. M., Jr, Billiar T. R. New insights into the regulation of inducible nitric oxide synthesis. Am J Physiol. 1994 Jun;266(6 Pt 1):E829–E839. doi: 10.1152/ajpendo.1994.266.6.E829. [DOI] [PubMed] [Google Scholar]
  19. Palmer L. A., Semenza G. L., Stoler M. H., Johns R. A. Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1. Am J Physiol. 1998 Feb;274(2 Pt 1):L212–L219. doi: 10.1152/ajplung.1998.274.2.L212. [DOI] [PubMed] [Google Scholar]
  20. Perrella M. A., Patterson C., Tan L., Yet S. F., Hsieh C. M., Yoshizumi M., Lee M. E. Suppression of interleukin-1beta-induced nitric-oxide synthase promoter/enhancer activity by transforming growth factor-beta1 in vascular smooth muscle cells. Evidence for mechanisms other than NF-kappaB. J Biol Chem. 1996 Jun 7;271(23):13776–13780. doi: 10.1074/jbc.271.23.13776. [DOI] [PubMed] [Google Scholar]
  21. Radomski M. W., Palmer R. M., Moncada S. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci U S A. 1990 Dec;87(24):10043–10047. doi: 10.1073/pnas.87.24.10043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rees D. D., Cellek S., Palmer R. M., Moncada S. Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock. Biochem Biophys Res Commun. 1990 Dec 14;173(2):541–547. doi: 10.1016/s0006-291x(05)80068-3. [DOI] [PubMed] [Google Scholar]
  23. Rengasamy A., Johns R. A. Characterization of endothelium-derived relaxing factor/nitric oxide synthase from bovine cerebellum and mechanism of modulation by high and low oxygen tensions. J Pharmacol Exp Ther. 1991 Oct;259(1):310–316. [PubMed] [Google Scholar]
  24. Rengasamy A., Johns R. A. Determination of Km for oxygen of nitric oxide synthase isoforms. J Pharmacol Exp Ther. 1996 Jan;276(1):30–33. [PubMed] [Google Scholar]
  25. Sato H., Fujiwara M., Bannai S. Effect of lipopolysaccharide on transport and metabolism of arginine in mouse peritoneal macrophages. J Leukoc Biol. 1992 Aug;52(2):161–164. doi: 10.1002/jlb.52.2.161. [DOI] [PubMed] [Google Scholar]
  26. Sato H., Ishii T., Sugita Y., Bannai S. Induction of cationic amino acid transport activity in mouse peritoneal macrophages by lipopolysaccharide. Biochim Biophys Acta. 1991 Oct 14;1069(1):46–52. doi: 10.1016/0005-2736(91)90102-e. [DOI] [PubMed] [Google Scholar]
  27. Schmidt K., Klatt P., Mayer B. Uptake of nitric oxide synthase inhibitors by macrophage RAW 264.7 cells. Biochem J. 1994 Jul 15;301(Pt 2):313–316. doi: 10.1042/bj3010313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Semenza G. L. Hypoxia-inducible factor 1 and the molecular physiology of oxygen homeostasis. J Lab Clin Med. 1998 Mar;131(3):207–214. doi: 10.1016/s0022-2143(98)90091-9. [DOI] [PubMed] [Google Scholar]
  29. Simmons W. W., Ungureanu-Longrois D., Smith G. K., Smith T. W., Kelly R. A. Glucocorticoids regulate inducible nitric oxide synthase by inhibiting tetrahydrobiopterin synthesis and L-arginine transport. J Biol Chem. 1996 Sep 27;271(39):23928–23937. doi: 10.1074/jbc.271.39.23928. [DOI] [PubMed] [Google Scholar]
  30. Stevens B. R., Kakuda D. K., Yu K., Waters M., Vo C. B., Raizada M. K. Induced nitric oxide synthesis is dependent on induced alternatively spliced CAT-2 encoding L-arginine transport in brain astrocytes. J Biol Chem. 1996 Sep 27;271(39):24017–24022. doi: 10.1074/jbc.271.39.24017. [DOI] [PubMed] [Google Scholar]
  31. Stipanuk M. H., Hirschberger L. L., De la Rosa J. Cysteinesulfinic acid, hypotaurine, and taurine: reversed-phase high-performance liquid chromatography. Methods Enzymol. 1987;143:155–160. doi: 10.1016/0076-6879(87)43028-0. [DOI] [PubMed] [Google Scholar]
  32. Stuehr D. J. Mammalian nitric oxide synthases. Biochim Biophys Acta. 1999 May 5;1411(2-3):217–230. doi: 10.1016/s0005-2728(99)00016-x. [DOI] [PubMed] [Google Scholar]
  33. Stuehr D. J. Structure-function aspects in the nitric oxide synthases. Annu Rev Pharmacol Toxicol. 1997;37:339–359. doi: 10.1146/annurev.pharmtox.37.1.339. [DOI] [PubMed] [Google Scholar]
  34. Vodovotz Y., Bogdan C., Paik J., Xie Q. W., Nathan C. Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor beta. J Exp Med. 1993 Aug 1;178(2):605–613. doi: 10.1084/jem.178.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. White M. F., Gazzola G. C., Christensen H. N. Cationic amino acid transport into cultured animal cells. I. Influx into cultured human fibroblasts. J Biol Chem. 1982 Apr 25;257(8):4443–4449. [PubMed] [Google Scholar]
  36. Whorton A. R., Simonds D. B., Piantadosi C. A. Regulation of nitric oxide synthesis by oxygen in vascular endothelial cells. Am J Physiol. 1997 Jun;272(6 Pt 1):L1161–L1166. doi: 10.1152/ajplung.1997.272.6.L1161. [DOI] [PubMed] [Google Scholar]
  37. Wu C. C., Croxtall J. D., Perretti M., Bryant C. E., Thiemermann C., Flower R. J., Vane J. R. Lipocortin 1 mediates the inhibition by dexamethasone of the induction by endotoxin of nitric oxide synthase in the rat. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3473–3477. doi: 10.1073/pnas.92.8.3473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wu G., Morris S. M., Jr Arginine metabolism: nitric oxide and beyond. Biochem J. 1998 Nov 15;336(Pt 1):1–17. doi: 10.1042/bj3360001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Xia Y., Zweier J. L. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6954–6958. doi: 10.1073/pnas.94.13.6954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Xie Q. W., Cho H. J., Calaycay J., Mumford R. A., Swiderek K. M., Lee T. D., Ding A., Troso T., Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992 Apr 10;256(5054):225–228. doi: 10.1126/science.1373522. [DOI] [PubMed] [Google Scholar]
  41. Zharikov S. I., Herrera H., Block E. R. Role of membrane potential in hypoxic inhibition of L-arginine uptake by lung endothelial cells. Am J Physiol. 1997 Jan;272(1 Pt 1):L78–L84. doi: 10.1152/ajplung.1997.272.1.L78. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES