Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Sep 15;350(Pt 3):735–740.

Tumour-necrosis-factor-receptor-associated factor 6, NF-kappaB-inducing kinase and IkappaB kinases mediate IgE isotype switching in response to CD40.

K Brady 1, S Fitzgerald 1, P N Moynagh 1
PMCID: PMC1221304  PMID: 10970786

Abstract

The process of IgE switching requires the prior transcription of the unrearranged Cepsilon gene, which leads to its recombination with the VDJ region. The activation of NF-kappaB by CD40 is a key process in facilitating this transcription by promoting the activation of the Cepsilon promoter. The present study explores the uncharacterized signalling pathways employed by CD40 in activating NF-kappaB by the overexpression of genes encoding wild-type and dominant-negative forms of the signalling components tumour-necrosis-factor-receptor-associated factor 6 (TRAF-6), NF-kappaB-inducing kinase (NIK), IkappaB kinase (IKK)-1 and IKK-2 in the BJAB B-cell line. The overexpression of TRAF-6 or NIK was sufficient to activate NF-kappaB and the Cepsilon promoter, whereas their dominant-negative counterparts decreased the ability of CD40 to activate NF-kappaB and the Cepsilon promoter. The overexpression of wild-type IKK-1 or IKK-2 seemed to cause toxic effects on the cells, whereas the dominant-negative forms were selective in their blockade of NF-kappaB and the Cepsilon promoter. These results suggest that CD40 employs TRAF-6, which presumably recruits NIK, which in turn employs IKK-1/IKK-2 to activate NF-kappaB and the Cepsilon promoter, the prologue to IgE switching. Thus the findings define a crucially important pathway in the generation of allergic states.

Full Text

The Full Text of this article is available as a PDF (152.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beg A. A., Finco T. S., Nantermet P. V., Baldwin A. S., Jr Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation. Mol Cell Biol. 1993 Jun;13(6):3301–3310. doi: 10.1128/mcb.13.6.3301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berberich I., Shu G. L., Clark E. A. Cross-linking CD40 on B cells rapidly activates nuclear factor-kappa B. J Immunol. 1994 Nov 15;153(10):4357–4366. [PubMed] [Google Scholar]
  3. Bottaro A., Lansford R., Xu L., Zhang J., Rothman P., Alt F. W. S region transcription per se promotes basal IgE class switch recombination but additional factors regulate the efficiency of the process. EMBO J. 1994 Feb 1;13(3):665–674. doi: 10.1002/j.1460-2075.1994.tb06305.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cao Z., Xiong J., Takeuchi M., Kurama T., Goeddel D. V. TRAF6 is a signal transducer for interleukin-1. Nature. 1996 Oct 3;383(6599):443–446. doi: 10.1038/383443a0. [DOI] [PubMed] [Google Scholar]
  5. Chin L. T., Malmborg A. C., Kristensson K., Hinkula J., Wahren B., Borrebaeck C. A. Mimicking the humoral immune response in vitro results in antigen-specific isotype switching supported by specific autologous T helper cells: generation of human HIV-1-neutralizing IgG monoclonal antibodies from naive donors. Eur J Immunol. 1995 Mar;25(3):657–663. doi: 10.1002/eji.1830250305. [DOI] [PubMed] [Google Scholar]
  6. Delphin S., Stavnezer J. Characterization of an interleukin 4 (IL-4) responsive region in the immunoglobulin heavy chain germline epsilon promoter: regulation by NF-IL-4, a C/EBP family member and NF-kappa B/p50. J Exp Med. 1995 Jan 1;181(1):181–192. doi: 10.1084/jem.181.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DiDonato J. A., Hayakawa M., Rothwarf D. M., Zandi E., Karin M. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature. 1997 Aug 7;388(6642):548–554. doi: 10.1038/41493. [DOI] [PubMed] [Google Scholar]
  8. Fenghao X., Saxon A., Nguyen A., Ke Z., Diaz-Sanchez D., Nel A. Interleukin 4 activates a signal transducer and activator of transcription (Stat) protein which interacts with an interferon-gamma activation site-like sequence upstream of the I epsilon exon in a human B cell line. Evidence for the involvement of Janus kinase 3 and interleukin-4 Stat. J Clin Invest. 1995 Aug;96(2):907–914. doi: 10.1172/JCI118138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flanagan J. G., Rabbitts T. H. The sequence of a human immunoglobulin epsilon heavy chain constant region gene, and evidence for three non-allelic genes. EMBO J. 1982;1(5):655–660. doi: 10.1002/j.1460-2075.1982.tb01223.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Henkel T., Machleidt T., Alkalay I., Krönke M., Ben-Neriah Y., Baeuerle P. A. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature. 1993 Sep 9;365(6442):182–185. doi: 10.1038/365182a0. [DOI] [PubMed] [Google Scholar]
  11. Iciek L. A., Delphin S. A., Stavnezer J. CD40 cross-linking induces Ig epsilon germline transcripts in B cells via activation of NF-kappaB: synergy with IL-4 induction. J Immunol. 1997 May 15;158(10):4769–4779. [PubMed] [Google Scholar]
  12. Ishida T., Mizushima S. i., Azuma S., Kobayashi N., Tojo T., Suzuki K., Aizawa S., Watanabe T., Mosialos G., Kieff E. Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J Biol Chem. 1996 Nov 15;271(46):28745–28748. doi: 10.1074/jbc.271.46.28745. [DOI] [PubMed] [Google Scholar]
  13. Jung S., Rajewsky K., Radbruch A. Shutdown of class switch recombination by deletion of a switch region control element. Science. 1993 Feb 12;259(5097):984–987. doi: 10.1126/science.8438159. [DOI] [PubMed] [Google Scholar]
  14. Kawabe T., Naka T., Yoshida K., Tanaka T., Fujiwara H., Suematsu S., Yoshida N., Kishimoto T., Kikutani H. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity. 1994 Jun;1(3):167–178. doi: 10.1016/1074-7613(94)90095-7. [DOI] [PubMed] [Google Scholar]
  15. Keegan A. D., Nelms K., Wang L. M., Pierce J. H., Paul W. E. Interleukin 4 receptor: signaling mechanisms. Immunol Today. 1994 Sep;15(9):423–432. doi: 10.1016/0167-5699(94)90272-0. [DOI] [PubMed] [Google Scholar]
  16. Korthäuer U., Graf D., Mages H. W., Brière F., Padayachee M., Malcolm S., Ugazio A. G., Notarangelo L. D., Levinsky R. J., Kroczek R. A. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature. 1993 Feb 11;361(6412):539–541. doi: 10.1038/361539a0. [DOI] [PubMed] [Google Scholar]
  17. Kosaka Y., Calderhead D. M., Manning E. M., Hambor J. E., Black A., Geleziunas R., Marcu K. B., Noelle R. J. Activation and regulation of the IkappaB kinase in human B cells by CD40 signaling. Eur J Immunol. 1999 Apr;29(4):1353–1362. doi: 10.1002/(SICI)1521-4141(199904)29:04<1353::AID-IMMU1353>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  18. Kuhné M. R., Robbins M., Hambor J. E., Mackey M. F., Kosaka Y., Nishimura T., Gigley J. P., Noelle R. J., Calderhead D. M. Assembly and regulation of the CD40 receptor complex in human B cells. J Exp Med. 1997 Jul 21;186(2):337–342. doi: 10.1084/jem.186.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee H. H., Dempsey P. W., Parks T. P., Zhu X., Baltimore D., Cheng G. Specificities of CD40 signaling: involvement of TRAF2 in CD40-induced NF-kappaB activation and intercellular adhesion molecule-1 up-regulation. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1421–1426. doi: 10.1073/pnas.96.4.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Leo E., Welsh K., Matsuzawa S., Zapata J. M., Kitada S., Mitchell R. S., Ely K. R., Reed J. C. Differential requirements for tumor necrosis factor receptor-associated factor family proteins in CD40-mediated induction of NF-kappaB and Jun N-terminal kinase activation. J Biol Chem. 1999 Aug 6;274(32):22414–22422. doi: 10.1074/jbc.274.32.22414. [DOI] [PubMed] [Google Scholar]
  21. Ling L., Cao Z., Goeddel D. V. NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3792–3797. doi: 10.1073/pnas.95.7.3792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lomaga M. A., Yeh W. C., Sarosi I., Duncan G. S., Furlonger C., Ho A., Morony S., Capparelli C., Van G., Kaufman S. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999 Apr 15;13(8):1015–1024. doi: 10.1101/gad.13.8.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lutzker S., Alt F. W. Structure and expression of germ line immunoglobulin gamma 2b transcripts. Mol Cell Biol. 1988 Apr;8(4):1849–1852. doi: 10.1128/mcb.8.4.1849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Malinin N. L., Boldin M. P., Kovalenko A. V., Wallach D. MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature. 1997 Feb 6;385(6616):540–544. doi: 10.1038/385540a0. [DOI] [PubMed] [Google Scholar]
  25. Mercurio F., Zhu H., Murray B. W., Shevchenko A., Bennett B. L., Li J., Young D. B., Barbosa M., Mann M., Manning A. IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science. 1997 Oct 31;278(5339):860–866. doi: 10.1126/science.278.5339.860. [DOI] [PubMed] [Google Scholar]
  26. Messner B., Stütz A. M., Albrecht B., Peiritsch S., Woisetschläger M. Cooperation of binding sites for STAT6 and NF kappa B/rel in the IL-4-induced up-regulation of the human IgE germline promoter. J Immunol. 1997 Oct 1;159(7):3330–3337. [PubMed] [Google Scholar]
  27. Müller J. R., Giese T., Henry D. L., Mushinski J. F., Marcu K. B. Generation of switch hybrid DNA between Ig heavy chain-mu and downstream switch regions in B lymphocytes. J Immunol. 1998 Aug 1;161(3):1354–1362. [PubMed] [Google Scholar]
  28. Pullen S. S., Dang T. T., Crute J. J., Kehry M. R. CD40 signaling through tumor necrosis factor receptor-associated factors (TRAFs). Binding site specificity and activation of downstream pathways by distinct TRAFs. J Biol Chem. 1999 May 14;274(20):14246–14254. doi: 10.1074/jbc.274.20.14246. [DOI] [PubMed] [Google Scholar]
  29. Pullen S. S., Miller H. G., Everdeen D. S., Dang T. T., Crute J. J., Kehry M. R. CD40-tumor necrosis factor receptor-associated factor (TRAF) interactions: regulation of CD40 signaling through multiple TRAF binding sites and TRAF hetero-oligomerization. Biochemistry. 1998 Aug 25;37(34):11836–11845. doi: 10.1021/bi981067q. [DOI] [PubMed] [Google Scholar]
  30. Rothe M., Sarma V., Dixit V. M., Goeddel D. V. TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science. 1995 Sep 8;269(5229):1424–1427. doi: 10.1126/science.7544915. [DOI] [PubMed] [Google Scholar]
  31. Ryan J. J., McReynolds L. J., Keegan A., Wang L. H., Garfein E., Rothman P., Nelms K., Paul W. E. Growth and gene expression are predominantly controlled by distinct regions of the human IL-4 receptor. Immunity. 1996 Feb;4(2):123–132. doi: 10.1016/s1074-7613(00)80677-9. [DOI] [PubMed] [Google Scholar]
  32. Régnier C. H., Song H. Y., Gao X., Goeddel D. V., Cao Z., Rothe M. Identification and characterization of an IkappaB kinase. Cell. 1997 Jul 25;90(2):373–383. doi: 10.1016/s0092-8674(00)80344-x. [DOI] [PubMed] [Google Scholar]
  33. Shimoda K., van Deursen J., Sangster M. Y., Sarawar S. R., Carson R. T., Tripp R. A., Chu C., Quelle F. W., Nosaka T., Vignali D. A. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature. 1996 Apr 18;380(6575):630–633. doi: 10.1038/380630a0. [DOI] [PubMed] [Google Scholar]
  34. Snapper C. M., Zelazowski P., Rosas F. R., Kehry M. R., Tian M., Baltimore D., Sha W. C. B cells from p50/NF-kappa B knockout mice have selective defects in proliferation, differentiation, germ-line CH transcription, and Ig class switching. J Immunol. 1996 Jan 1;156(1):183–191. [PubMed] [Google Scholar]
  35. Stavnezer J. Antibody class switching. Adv Immunol. 1996;61:79–146. doi: 10.1016/s0065-2776(08)60866-4. [DOI] [PubMed] [Google Scholar]
  36. Thanos D., Maniatis T. NF-kappa B: a lesson in family values. Cell. 1995 Feb 24;80(4):529–532. doi: 10.1016/0092-8674(95)90506-5. [DOI] [PubMed] [Google Scholar]
  37. Thienes C. P., De Monte L., Monticelli S., Busslinger M., Gould H. J., Vercelli D. The transcription factor B cell-specific activator protein (BSAP) enhances both IL-4- and CD40-mediated activation of the human epsilon germline promoter. J Immunol. 1997 Jun 15;158(12):5874–5882. [PubMed] [Google Scholar]
  38. Traenckner E. B., Pahl H. L., Henkel T., Schmidt K. N., Wilk S., Baeuerle P. A. Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. EMBO J. 1995 Jun 15;14(12):2876–2883. doi: 10.1002/j.1460-2075.1995.tb07287.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Traenckner E. B., Wilk S., Baeuerle P. A. A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B. EMBO J. 1994 Nov 15;13(22):5433–5441. doi: 10.1002/j.1460-2075.1994.tb06878.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Woronicz J. D., Gao X., Cao Z., Rothe M., Goeddel D. V. IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science. 1997 Oct 31;278(5339):866–869. doi: 10.1126/science.278.5339.866. [DOI] [PubMed] [Google Scholar]
  41. Xu J., Foy T. M., Laman J. D., Elliott E. A., Dunn J. J., Waldschmidt T. J., Elsemore J., Noelle R. J., Flavell R. A. Mice deficient for the CD40 ligand. Immunity. 1994 Aug;1(5):423–431. doi: 10.1016/1074-7613(94)90073-6. [DOI] [PubMed] [Google Scholar]
  42. Zandi E., Rothwarf D. M., Delhase M., Hayakawa M., Karin M. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell. 1997 Oct 17;91(2):243–252. doi: 10.1016/s0092-8674(00)80406-7. [DOI] [PubMed] [Google Scholar]
  43. Zhang J., Bottaro A., Li S., Stewart V., Alt F. W. A selective defect in IgG2b switching as a result of targeted mutation of the I gamma 2b promoter and exon. EMBO J. 1993 Sep;12(9):3529–3537. doi: 10.1002/j.1460-2075.1993.tb06027.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES