Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Sep 15;350(Pt 3):829–837.

Role of endocytosis in the transactivation of nuclear factor-kappaB by oxidized low-density lipoprotein.

C Y Han 1, S Y Park 1, Y K Pak 1
PMCID: PMC1221317  PMID: 10970799

Abstract

Oxidized low-density lipoprotein (oxLDL) has been shown to modulate transactivation by the peroxisome proliferator-activated receptor (PPAR)-gamma and by nuclear factor-kappaB (NF-kappaB). In the present study, the oxLDL signalling pathways involved in NF-kappaB transactivation were investigated by utilizing a reporter construct driven by three upstream NF-kappaB binding sites, and various pharmacological inhibitors. OxLDL and its constituent lysophophatidylcholine (lysoPC) induced a rapid and transient increase in intracellular calcium and stimulated NF-kappaB transactivation in resting RAW264.7 macrophage cells in an oxidation-dependent manner. NF-kappaB activation by oxLDL or lysoPC was inhibited by inhibitors of protein kinase C or by a chelator of intracellular calcium. Tyrosine kinase or phosphatidylinositol 3-kinase inhibitors did not block NF-kappaB transactivation. Furthermore, oxLDL-induced NF-kappaB activity was abolished by PPAR-gamma ligands. When the endocytosis of oxLDL was blocked by cytochalasin B, NF-kappaB transactivation by oxLDL was synergistically increased, while PPAR transactivation was blocked. These results suggest that oxLDL activates NF-kappaB in resting macrophages via protein kinase C- and/or calcium-dependent pathways, and that this does not involve the endocytic processing of oxLDL. The endocytosis-dependent activation of PPAR-gamma by oxLDL may function as a route of inactivation of the oxLDL-induced NF-kappaB signal.

Full Text

The Full Text of this article is available as a PDF (358.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Augé N., Andrieu N., Nègre-Salvayre A., Thiers J. C., Levade T., Salvayre R. The sphingomyelin-ceramide signaling pathway is involved in oxidized low density lipoprotein-induced cell proliferation. J Biol Chem. 1996 Aug 9;271(32):19251–19255. doi: 10.1074/jbc.271.32.19251. [DOI] [PubMed] [Google Scholar]
  2. Baeuerle P. A., Baltimore D. NF-kappa B: ten years after. Cell. 1996 Oct 4;87(1):13–20. doi: 10.1016/s0092-8674(00)81318-5. [DOI] [PubMed] [Google Scholar]
  3. Brand K., Page S., Rogler G., Bartsch A., Brandl R., Knuechel R., Page M., Kaltschmidt C., Baeuerle P. A., Neumeier D. Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Invest. 1996 Apr 1;97(7):1715–1722. doi: 10.1172/JCI118598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Claus R., Fyrnys B., Deigner H. P., Wolf G. Oxidized low-density lipoprotein stimulates protein kinase C (PKC) and induces expression of PKC-isotypes via prostaglandin-H-synthase in P388D1 macrophage-like cells. Biochemistry. 1996 Apr 16;35(15):4911–4922. doi: 10.1021/bi952036n. [DOI] [PubMed] [Google Scholar]
  5. Cominacini L., Garbin U., Fratta Pasini A., Paulon T., Davoli A., Campagnola M., Marchi E., Pastorino A. M., Gaviraghi G., Lo Cascio V. Lacidipine inhibits the activation of the transcription factor NF-kappaB and the expression of adhesion molecules induced by pro-oxidant signals on endothelial cells. J Hypertens. 1997 Dec;15(12 Pt 2):1633–1640. doi: 10.1097/00004872-199715120-00065. [DOI] [PubMed] [Google Scholar]
  6. Cominacini L., Garbin U., Pasini A. F., Davoli A., Campagnola M., Pastorino A. M., Gaviraghi G., Lo Cascio V. Oxidized low-density lipoprotein increases the production of intracellular reactive oxygen species in endothelial cells: inhibitory effect of lacidipine. J Hypertens. 1998 Dec;16(12 Pt 2):1913–1919. doi: 10.1097/00004872-199816121-00010. [DOI] [PubMed] [Google Scholar]
  7. Draczynska-Lusiak B., Chen Y. M., Sun A. Y. Oxidized lipoproteins activate NF-kappaB binding activity and apoptosis in PC12 cells. Neuroreport. 1998 Feb 16;9(3):527–532. doi: 10.1097/00001756-199802160-00028. [DOI] [PubMed] [Google Scholar]
  8. Fong L. G., Albert T. S., Hom S. E. Inhibition of the macrophage-induced oxidation of low density lipoprotein by interferon-gamma. J Lipid Res. 1994 May;35(5):893–904. [PubMed] [Google Scholar]
  9. Fong L. G., Fong T. A., Cooper A. D. Inhibition of lipopolysaccharide-induced interleukin-1 beta mRNA expression in mouse macrophages by oxidized low density lipoprotein. J Lipid Res. 1991 Dec;32(12):1899–1910. [PubMed] [Google Scholar]
  10. Hamilton T. A., Ma G. P., Chisolm G. M. Oxidized low density lipoprotein suppresses the expression of tumor necrosis factor-alpha mRNA in stimulated murine peritoneal macrophages. J Immunol. 1990 Mar 15;144(6):2343–2350. [PubMed] [Google Scholar]
  11. Hamilton T. A., Major J. A., Chisolm G. M. The effects of oxidized low density lipoproteins on inducible mouse macrophage gene expression are gene and stimulus dependent. J Clin Invest. 1995 May;95(5):2020–2027. doi: 10.1172/JCI117887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Han J., Hajjar D. P., Febbraio M., Nicholson A. C. Native and modified low density lipoproteins increase the functional expression of the macrophage class B scavenger receptor, CD36. J Biol Chem. 1997 Aug 22;272(34):21654–21659. doi: 10.1074/jbc.272.34.21654. [DOI] [PubMed] [Google Scholar]
  13. Huang M. M., Bolen J. B., Barnwell J. W., Shattil S. J., Brugge J. S. Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7844–7848. doi: 10.1073/pnas.88.17.7844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lipton B. A., Parthasarathy S., Ord V. A., Clinton S. K., Libby P., Rosenfeld M. E. Components of the protein fraction of oxidized low density lipoprotein stimulate interleukin-1 alpha production by rabbit arterial macrophage-derived foam cells. J Lipid Res. 1995 Oct;36(10):2232–2242. [PubMed] [Google Scholar]
  15. Liu Z. G., Hsu H., Goeddel D. V., Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell. 1996 Nov 1;87(3):565–576. doi: 10.1016/s0092-8674(00)81375-6. [DOI] [PubMed] [Google Scholar]
  16. Lizard G., Monier S., Cordelet C., Gesquière L., Deckert V., Gueldry S., Lagrost L., Gambert P. Characterization and comparison of the mode of cell death, apoptosis versus necrosis, induced by 7beta-hydroxycholesterol and 7-ketocholesterol in the cells of the vascular wall. Arterioscler Thromb Vasc Biol. 1999 May;19(5):1190–1200. doi: 10.1161/01.atv.19.5.1190. [DOI] [PubMed] [Google Scholar]
  17. Matsumura T., Sakai M., Kobori S., Biwa T., Takemura T., Matsuda H., Hakamata H., Horiuchi S., Shichiri M. Two intracellular signaling pathways for activation of protein kinase C are involved in oxidized low-density lipoprotein-induced macrophage growth. Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):3013–3020. doi: 10.1161/01.atv.17.11.3013. [DOI] [PubMed] [Google Scholar]
  18. Nagy L., Tontonoz P., Alvarez J. G., Chen H., Evans R. M. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 1998 Apr 17;93(2):229–240. doi: 10.1016/s0092-8674(00)81574-3. [DOI] [PubMed] [Google Scholar]
  19. Nishikawa K., Arai H., Inoue K. Scavenger receptor-mediated uptake and metabolism of lipid vesicles containing acidic phospholipids by mouse peritoneal macrophages. J Biol Chem. 1990 Mar 25;265(9):5226–5231. [PubMed] [Google Scholar]
  20. Ohlsson B. G., Englund M. C., Karlsson A. L., Knutsen E., Erixon C., Skribeck H., Liu Y., Bondjers G., Wiklund O. Oxidized low density lipoprotein inhibits lipopolysaccharide-induced binding of nuclear factor-kappaB to DNA and the subsequent expression of tumor necrosis factor-alpha and interleukin-1beta in macrophages. J Clin Invest. 1996 Jul 1;98(1):78–89. doi: 10.1172/JCI118780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pak Y. K., Kanuck M. P., Berrios D., Briggs M. R., Cooper A. D., Ellsworth J. L. Activation of LDL receptor gene expression in HepG2 cells by hepatocyte growth factor. J Lipid Res. 1996 May;37(5):985–998. [PubMed] [Google Scholar]
  22. Quinn M. T., Parthasarathy S., Steinberg D. Endothelial cell-derived chemotactic activity for mouse peritoneal macrophages and the effects of modified forms of low density lipoprotein. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5949–5953. doi: 10.1073/pnas.82.17.5949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ricote M., Li A. C., Willson T. M., Kelly C. J., Glass C. K. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature. 1998 Jan 1;391(6662):79–82. doi: 10.1038/34178. [DOI] [PubMed] [Google Scholar]
  24. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  25. Sakai M., Matsumura T., Biwa T., Hakamata H., Yi D., Shichiri M., Horiuchi S. Role of the macrophage scavenger receptor for internalization of lysophosphatidylcholine in oxidized low density lipoprotein-induced macrophage growth. Ann N Y Acad Sci. 1997 Apr 15;811:378–384. doi: 10.1111/j.1749-6632.1997.tb52017.x. [DOI] [PubMed] [Google Scholar]
  26. Schackelford R. E., Misra U. K., Florine-Casteel K., Thai S. F., Pizzo S. V., Adams D. O. Oxidized low density lipoprotein suppresses activation of NF kappa B in macrophages via a pertussis toxin-sensitive signaling mechanism. J Biol Chem. 1995 Feb 24;270(8):3475–3478. doi: 10.1074/jbc.270.8.3475. [DOI] [PubMed] [Google Scholar]
  27. Schindler U., Baichwal V. R. Three NF-kappa B binding sites in the human E-selectin gene required for maximal tumor necrosis factor alpha-induced expression. Mol Cell Biol. 1994 Sep;14(9):5820–5831. doi: 10.1128/mcb.14.9.5820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem. 1997 Aug 22;272(34):20963–20966. doi: 10.1074/jbc.272.34.20963. [DOI] [PubMed] [Google Scholar]
  29. Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
  30. Steinbrecher U. P., Parthasarathy S., Leake D. S., Witztum J. L., Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3883–3887. doi: 10.1073/pnas.81.12.3883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stephan Z. F., Yurachek E. C. Rapid fluorometric assay of LDL receptor activity by DiI-labeled LDL. J Lipid Res. 1993 Feb;34(2):325–330. [PubMed] [Google Scholar]
  32. Sugiyama S., Kugiyama K., Ogata N., Doi H., Ota Y., Ohgushi M., Matsumura T., Oka H., Yasue H. Biphasic regulation of transcription factor nuclear factor-kappaB activity in human endothelial cells by lysophosphatidylcholine through protein kinase C-mediated pathway. Arterioscler Thromb Vasc Biol. 1998 Apr;18(4):568–576. doi: 10.1161/01.atv.18.4.568. [DOI] [PubMed] [Google Scholar]
  33. Sugiyama S., Kugiyama K., Ohgushi M., Fujimoto K., Yasue H. Lysophosphatidylcholine in oxidized low-density lipoprotein increases endothelial susceptibility to polymorphonuclear leukocyte-induced endothelial dysfunction in porcine coronary arteries. Role of protein kinase C. Circ Res. 1994 Apr;74(4):565–575. doi: 10.1161/01.res.74.4.565. [DOI] [PubMed] [Google Scholar]
  34. Thomas C. E., Jackson R. L., Ohlweiler D. F., Ku G. Multiple lipid oxidation products in low density lipoproteins induce interleukin-1 beta release from human blood mononuclear cells. J Lipid Res. 1994 Mar;35(3):417–427. [PubMed] [Google Scholar]
  35. Thurberg B. L., Collins T. The nuclear factor-kappa B/inhibitor of kappa B autoregulatory system and atherosclerosis. Curr Opin Lipidol. 1998 Oct;9(5):387–396. doi: 10.1097/00041433-199810000-00002. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES