Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Sep 15;350(Pt 3):891–899.

Sustained activation of p42/p44 mitogen-activated protein kinase during recovery from simulated ischaemia mediates adaptive cytoprotection in cardiomyocytes.

A Punn 1, J W Mockridge 1, S Farooqui 1, M S Marber 1, R J Heads 1
PMCID: PMC1221324  PMID: 10970806

Abstract

Delayed cytoprotection (preconditioning) occurs 24 h after sublethal simulated ischaemia and reperfusion (SI/R) in neonatal rat ventricular cardiomyocytes. SI/R was used to investigate the role of activation of mitogen-activated protein kinases (MAPKs), stress-activated protein kinases (SAPKs) and phosphoinositide 3-kinase-dependent protein kinase B (PKB)/Akt in cytoprotection. SI resulted in transient dual (Thr/Tyr) phosphorylation of p42/p44-MAPK and p38-MAPK, weak phosphorylation of p46/p54-SAPK, but no phosphorylation of PKB. 'Reperfusion' caused further transient phosphorylation of p38-MAPK, but sustained phosphorylation of p42/p44-MAPK (lasting 4 h) and of Ser(473) of PKB (lasting 2 h). Furthermore, SI/R (24 h) induced delayed protection against lethal SI, as determined by an increase in cell viability ¿bioreduction of MTT [3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide]¿ and a decrease in cell injury (release of creatine kinase). Both protection and phosphorylation of p42/p44-MAPK were blocked by the MEK-1/2 (MAPK/Erk kinase-1/2) inhibitor PD98059 (50 microM) when given during SI/R, but not when given during SI alone. The p38-MAPK inhibitor SB203580 (10 microM) blocked the p38-MAPK-dependent phosphorylation of activating transcription factor 2 in vitro, and the phosphoinositide 3-kinase inhibitor wortmannin (100 nM) blocked PKB phosphorylation on Ser(473). However, neither SB203580 nor wortmannin had any effect on delayed protection. Therefore sustained activation of p42/p44-MAPK during simulated 'reperfusion' following sublethal SI mediates preconditioning in cardiomyocytes independently of transient activation of p38-MAPK or sustained activation of PKB.

Full Text

The Full Text of this article is available as a PDF (281.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abas L., Bogoyevitch M. A., Guppy M. Mitochondrial ATP production is necessary for activation of the extracellular-signal-regulated kinases during ischaemia/reperfusion in rat myocyte-derived H9c2 cells. Biochem J. 2000 Jul 1;349(Pt 1):119–126. doi: 10.1042/0264-6021:3490119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adderley S. R., Fitzgerald D. J. Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. J Biol Chem. 1999 Feb 19;274(8):5038–5046. doi: 10.1074/jbc.274.8.5038. [DOI] [PubMed] [Google Scholar]
  3. Anderson K. E., Coadwell J., Stephens L. R., Hawkins P. T. Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B. Curr Biol. 1998 Jun 4;8(12):684–691. doi: 10.1016/s0960-9822(98)70274-x. [DOI] [PubMed] [Google Scholar]
  4. Armstrong S. C., Delacey M., Ganote C. E. Phosphorylation state of hsp27 and p38 MAPK during preconditioning and protein phosphatase inhibitor protection of rabbit cardiomyocytes. J Mol Cell Cardiol. 1999 Mar;31(3):555–567. doi: 10.1006/jmcc.1998.0891. [DOI] [PubMed] [Google Scholar]
  5. Berra E., Diaz-Meco M. T., Moscat J. The activation of p38 and apoptosis by the inhibition of Erk is antagonized by the phosphoinositide 3-kinase/Akt pathway. J Biol Chem. 1998 Apr 24;273(17):10792–10797. doi: 10.1074/jbc.273.17.10792. [DOI] [PubMed] [Google Scholar]
  6. Bialik S., Cryns V. L., Drincic A., Miyata S., Wollowick A. L., Srinivasan A., Kitsis R. N. The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ Res. 1999 Sep 3;85(5):403–414. doi: 10.1161/01.res.85.5.403. [DOI] [PubMed] [Google Scholar]
  7. Bogoyevitch M. A., Gillespie-Brown J., Ketterman A. J., Fuller S. J., Ben-Levy R., Ashworth A., Marshall C. J., Sugden P. H. Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res. 1996 Aug;79(2):162–173. doi: 10.1161/01.res.79.2.162. [DOI] [PubMed] [Google Scholar]
  8. Bogoyevitch M. A., Ketterman A. J., Sugden P. H. Cellular stresses differentially activate c-Jun N-terminal protein kinases and extracellular signal-regulated protein kinases in cultured ventricular myocytes. J Biol Chem. 1995 Dec 15;270(50):29710–29717. doi: 10.1074/jbc.270.50.29710. [DOI] [PubMed] [Google Scholar]
  9. Borasio G. D., John J., Wittinghofer A., Barde Y. A., Sendtner M., Heumann R. ras p21 protein promotes survival and fiber outgrowth of cultured embryonic neurons. Neuron. 1989 Jan;2(1):1087–1096. doi: 10.1016/0896-6273(89)90233-x. [DOI] [PubMed] [Google Scholar]
  10. Budinger G. R., Duranteau J., Chandel N. S., Schumacker P. T. Hibernation during hypoxia in cardiomyocytes. Role of mitochondria as the O2 sensor. J Biol Chem. 1998 Feb 6;273(6):3320–3326. doi: 10.1074/jbc.273.6.3320. [DOI] [PubMed] [Google Scholar]
  11. Cassina A., Radi R. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys. 1996 Apr 15;328(2):309–316. doi: 10.1006/abbi.1996.0178. [DOI] [PubMed] [Google Scholar]
  12. Clerk A., Michael A., Sugden P. H. Stimulation of multiple mitogen-activated protein kinase sub-families by oxidative stress and phosphorylation of the small heat shock protein, HSP25/27, in neonatal ventricular myocytes. Biochem J. 1998 Aug 1;333(Pt 3):581–589. doi: 10.1042/bj3330581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Clerk A., Michael A., Sugden P. H. Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: a role in cardiac myocyte hypertrophy? J Cell Biol. 1998 Jul 27;142(2):523–535. doi: 10.1083/jcb.142.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cumming D. V., Heads R. J., Brand N. J., Yellon D. M., Latchman D. S. The ability of heat stress and metabolic preconditioning to protect primary rat cardiac myocytes. Basic Res Cardiol. 1996 Jan-Feb;91(1):79–85. doi: 10.1007/BF00788868. [DOI] [PubMed] [Google Scholar]
  15. Datta S. R., Dudek H., Tao X., Masters S., Fu H., Gotoh Y., Greenberg M. E. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997 Oct 17;91(2):231–241. doi: 10.1016/s0092-8674(00)80405-5. [DOI] [PubMed] [Google Scholar]
  16. Dimmeler S., Fleming I., Fisslthaler B., Hermann C., Busse R., Zeiher A. M. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999 Jun 10;399(6736):601–605. doi: 10.1038/21224. [DOI] [PubMed] [Google Scholar]
  17. Fujio Y., Nguyen T., Wencker D., Kitsis R. N., Walsh K. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation. 2000 Feb 15;101(6):660–667. doi: 10.1161/01.cir.101.6.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gonzalez-Zulueta M., Feldman A. B., Klesse L. J., Kalb R. G., Dillman J. F., Parada L. F., Dawson T. M., Dawson V. L. Requirement for nitric oxide activation of p21(ras)/extracellular regulated kinase in neuronal ischemic preconditioning. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):436–441. doi: 10.1073/pnas.97.1.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Haq S. E., Clerk A., Sugden P. H. Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by adenosine in the perfused rat heart. FEBS Lett. 1998 Sep 4;434(3):305–308. doi: 10.1016/s0014-5793(98)01000-x. [DOI] [PubMed] [Google Scholar]
  20. Huwiler A., Pfeilschifter J. Nitric oxide stimulates the stress-activated protein kinase p38 in rat renal mesangial cells. J Exp Biol. 1999 Mar;202(Pt 6):655–660. doi: 10.1242/jeb.202.6.655. [DOI] [PubMed] [Google Scholar]
  21. Kurada P., White K. Ras promotes cell survival in Drosophila by downregulating hid expression. Cell. 1998 Oct 30;95(3):319–329. doi: 10.1016/s0092-8674(00)81764-x. [DOI] [PubMed] [Google Scholar]
  22. Lazou A., Sugden P. H., Clerk A. Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by the G-protein-coupled receptor agonist phenylephrine in the perfused rat heart. Biochem J. 1998 Jun 1;332(Pt 2):459–465. doi: 10.1042/bj3320459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ma X. L., Kumar S., Gao F., Louden C. S., Lopez B. L., Christopher T. A., Wang C., Lee J. C., Feuerstein G. Z., Yue T. L. Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation. 1999 Apr 6;99(13):1685–1691. doi: 10.1161/01.cir.99.13.1685. [DOI] [PubMed] [Google Scholar]
  24. Mackay K., Mochly-Rosen D. An inhibitor of p38 mitogen-activated protein kinase protects neonatal cardiac myocytes from ischemia. J Biol Chem. 1999 Mar 5;274(10):6272–6279. doi: 10.1074/jbc.274.10.6272. [DOI] [PubMed] [Google Scholar]
  25. Marber M. S. Ischemic preconditioning in isolated cells. Circ Res. 2000 May 12;86(9):926–931. doi: 10.1161/01.res.86.9.926. [DOI] [PubMed] [Google Scholar]
  26. Maroney A. C., Glicksman M. A., Basma A. N., Walton K. M., Knight E., Jr, Murphy C. A., Bartlett B. A., Finn J. P., Angeles T., Matsuda Y. Motoneuron apoptosis is blocked by CEP-1347 (KT 7515), a novel inhibitor of the JNK signaling pathway. J Neurosci. 1998 Jan 1;18(1):104–111. doi: 10.1523/JNEUROSCI.18-01-00104.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marte B. M., Downward J. PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci. 1997 Sep;22(9):355–358. doi: 10.1016/s0968-0004(97)01097-9. [DOI] [PubMed] [Google Scholar]
  28. Maulik N., Yoshida T., Zu Y. L., Sato M., Banerjee A., Das D. K. Ischemic preconditioning triggers tyrosine kinase signaling: a potential role for MAPKAP kinase 2. Am J Physiol. 1998 Nov;275(5 Pt 2):H1857–H1864. doi: 10.1152/ajpheart.1998.275.5.H1857. [DOI] [PubMed] [Google Scholar]
  29. Mizukami Y., Yoshida K. i. Mitogen-activated protein kinase translocates to the nucleus during ischaemia and is activated during reperfusion. Biochem J. 1997 May 1;323(Pt 3):785–790. doi: 10.1042/bj3230785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mockridge J. W., Marber M. S., Heads R. J. Activation of Akt during simulated ischemia/reperfusion in cardiac myocytes. Biochem Biophys Res Commun. 2000 Apr 21;270(3):947–952. doi: 10.1006/bbrc.2000.2522. [DOI] [PubMed] [Google Scholar]
  31. Nakano A., Baines C. P., Kim S. O., Pelech S. L., Downey J. M., Cohen M. V., Critz S. D. Ischemic preconditioning activates MAPKAPK2 in the isolated rabbit heart: evidence for involvement of p38 MAPK. Circ Res. 2000 Feb 4;86(2):144–151. doi: 10.1161/01.res.86.2.144. [DOI] [PubMed] [Google Scholar]
  32. Nayeem M. A., Hess M. L., Qian Y. Z., Loesser K. E., Kukreja R. C. Delayed preconditioning of cultured adult rat cardiac myocytes: role of 70- and 90-kDa heat stress proteins. Am J Physiol. 1997 Aug;273(2 Pt 2):H861–H868. doi: 10.1152/ajpheart.1997.273.2.H861. [DOI] [PubMed] [Google Scholar]
  33. Omura T., Yoshiyama M., Shimada T., Shimizu N., Kim S., Iwao H., Takeuchi K., Yoshikawa J. Activation of mitogen-activated protein kinases in in vivo ischemia/reperfused myocardium in rats. J Mol Cell Cardiol. 1999 Jun;31(6):1269–1279. doi: 10.1006/jmcc.1999.0959. [DOI] [PubMed] [Google Scholar]
  34. Ping P., Murphy E. Role of p38 mitogen-activated protein kinases in preconditioning: a detrimental factor or a protective kinase? Circ Res. 2000 May 12;86(9):921–922. doi: 10.1161/01.res.86.9.921. [DOI] [PubMed] [Google Scholar]
  35. Ping P., Zhang J., Cao X., Li R. C., Kong D., Tang X. L., Qiu Y., Manchikalapudi S., Auchampach J. A., Black R. G. PKC-dependent activation of p44/p42 MAPKs during myocardial ischemia-reperfusion in conscious rabbits. Am J Physiol. 1999 May;276(5 Pt 2):H1468–H1481. doi: 10.1152/ajpheart.1999.276.5.H1468. [DOI] [PubMed] [Google Scholar]
  36. Rakhit R. D., Edwards R. J., Marber M. S. Nitric oxide, nitrates and ischaemic preconditioning. Cardiovasc Res. 1999 Aug 15;43(3):621–627. doi: 10.1016/s0008-6363(99)00081-4. [DOI] [PubMed] [Google Scholar]
  37. Romashkova J. A., Makarov S. S. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature. 1999 Sep 2;401(6748):86–90. doi: 10.1038/43474. [DOI] [PubMed] [Google Scholar]
  38. Seko Y., Tobe K., Ueki K., Kadowaki T., Yazaki Y. Hypoxia and hypoxia/reoxygenation activate Raf-1, mitogen-activated protein kinase kinase, mitogen-activated protein kinases, and S6 kinase in cultured rat cardiac myocytes. Circ Res. 1996 Jan;78(1):82–90. doi: 10.1161/01.res.78.1.82. [DOI] [PubMed] [Google Scholar]
  39. Sugden P. H., Clerk A. "Stress-responsive" mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res. 1998 Aug 24;83(4):345–352. doi: 10.1161/01.res.83.4.345. [DOI] [PubMed] [Google Scholar]
  40. Vogel K. S., Brannan C. I., Jenkins N. A., Copeland N. G., Parada L. F. Loss of neurofibromin results in neurotrophin-independent survival of embryonic sensory and sympathetic neurons. Cell. 1995 Sep 8;82(5):733–742. doi: 10.1016/0092-8674(95)90470-0. [DOI] [PubMed] [Google Scholar]
  41. Wang Y., Huang S., Sah V. P., Ross J., Jr, Brown J. H., Han J., Chien K. R. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem. 1998 Jan 23;273(4):2161–2168. doi: 10.1074/jbc.273.4.2161. [DOI] [PubMed] [Google Scholar]
  42. Weinbrenner C., Liu G. S., Cohen M. V., Downey J. M. Phosphorylation of tyrosine 182 of p38 mitogen-activated protein kinase correlates with the protection of preconditioning in the rabbit heart. J Mol Cell Cardiol. 1997 Sep;29(9):2383–2391. doi: 10.1006/jmcc.1997.0473. [DOI] [PubMed] [Google Scholar]
  43. Wu S., Li H. Y., Wong T. M. Cardioprotection of preconditioning by metabolic inhibition in the rat ventricular myocyte. Involvement of kappa-opioid receptor. Circ Res. 1999 Jun 25;84(12):1388–1395. doi: 10.1161/01.res.84.12.1388. [DOI] [PubMed] [Google Scholar]
  44. Yin T., Sandhu G., Wolfgang C. D., Burrier A., Webb R. L., Rigel D. F., Hai T., Whelan J. Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem. 1997 Aug 8;272(32):19943–19950. doi: 10.1074/jbc.272.32.19943. [DOI] [PubMed] [Google Scholar]
  45. del Peso L., González-García M., Page C., Herrera R., Nuñez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science. 1997 Oct 24;278(5338):687–689. doi: 10.1126/science.278.5338.687. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES