Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Sep 15;350(Pt 3):909–915.

The chloride effect is related to anion binding in determining the rate of iron release from the human transferrin N-lobe.

Q Y He 1, A B Mason 1, V Nguyen 1, R T MacGillivray 1, R C Woodworth 1
PMCID: PMC1221326  PMID: 10970808

Abstract

The major function of human transferrin is to deliver iron from the bloodstream to actively dividing cells. Upon iron release, the protein changes its conformation from 'closed' to 'open'. Extensive studies in vitro indicate that iron release from transferrin is very complex and involves many factors, including pH, the chelator used, an anion effect, temperature, receptor binding and intra-lobe interactions. Our earlier work [He, Mason and Woodworth (1997) Biochem. J. 328, 439-445] using the isolated transferrin N-lobe (recombinant N-lobe of human transferrin comprising residues 1-337; hTF/2N) has shown that anions and pH modulate iron release from hTF/2N in an interdependent manner: chloride retards iron release at neutral pH, but accelerates the reaction at acidic pH. The present study supports this idea and further details the nature of the dual effect of chloride: the anion effect on iron release is closely related to the strength of anion binding to the apoprotein. The negative effect seems to originate from competition between chloride and the chelator for an anion-binding site(s) near the metal centre. With decreasing pH, the strength of anion binding to hTF/2N increases linearly, decreasing the contribution of competition with the chelator. In the meantime, the 'open' or 'loose' conformation of hTF/2N, induced by the protonation of critical residues such as the Lys-206/Lys-296 pair at low pH, enables chloride to enter the cleft and bind to exposed side chains, thereby promoting cleft opening and synergistically allowing removal of iron by the chelator, leading to a positive anion effect. Disabling one or more of the primary anion-binding residues, namely Arg-124, Lys-206 and Lys-296, substantially decreases the anion-binding ability of the resulting mutant proteins. In these cases, the competition for the remaining binding residue(s) is increased, leading to a negative chloride effect or, at most, a very small positive effect, even at low pH.

Full Text

The Full Text of this article is available as a PDF (155.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin D. A., de Sousa D. M. The effect of salts on the kinetics of iron release from N-terminal and C terminal monoferrictransferrins. Biochem Biophys Res Commun. 1981 Apr 30;99(4):1101–1107. doi: 10.1016/0006-291x(81)90732-4. [DOI] [PubMed] [Google Scholar]
  2. Cheng Y., Mason A. B., Woodworth R. C. pH dependence of specific divalent anion binding to the N-lobe of recombinant human transferrin. Biochemistry. 1995 Nov 14;34(45):14879–14884. doi: 10.1021/bi00045a032. [DOI] [PubMed] [Google Scholar]
  3. Dewan J. C., Mikami B., Hirose M., Sacchettini J. C. Structural evidence for a pH-sensitive dilysine trigger in the hen ovotransferrin N-lobe: implications for transferrin iron release. Biochemistry. 1993 Nov 16;32(45):11963–11968. doi: 10.1021/bi00096a004. [DOI] [PubMed] [Google Scholar]
  4. Egan T. J., Zak O., Aisen P. The anion requirement for iron release from transferrin is preserved in the receptor-transferrin complex. Biochemistry. 1993 Aug 17;32(32):8162–8167. doi: 10.1021/bi00083a016. [DOI] [PubMed] [Google Scholar]
  5. Foley A. A., Bates G. W. The influence of inorganic anions on the formation and stability of Fe3+-transferrin-anion complexes. Biochim Biophys Acta. 1988 May 12;965(2-3):154–162. doi: 10.1016/0304-4165(88)90051-7. [DOI] [PubMed] [Google Scholar]
  6. Funk W. D., MacGillivray R. T., Mason A. B., Brown S. A., Woodworth R. C. Expression of the amino-terminal half-molecule of human serum transferrin in cultured cells and characterization of the recombinant protein. Biochemistry. 1990 Feb 13;29(6):1654–1660. doi: 10.1021/bi00458a043. [DOI] [PubMed] [Google Scholar]
  7. Harris W. R. Thermodynamics of anion binding to human serum transferrin. Biochemistry. 1985 Dec 3;24(25):7412–7418. doi: 10.1021/bi00346a057. [DOI] [PubMed] [Google Scholar]
  8. He Q. Y., Mason A. B., Pakdaman R., Chasteen N. D., Dixon B. K., Tam B. M., Nguyen V., MacGillivray R. T., Woodworth R. C. Mutations at the histidine 249 ligand profoundly alter the spectral and iron-binding properties of human serum transferrin N-lobe. Biochemistry. 2000 Feb 15;39(6):1205–1210. doi: 10.1021/bi9915216. [DOI] [PubMed] [Google Scholar]
  9. He Q. Y., Mason A. B., Tam B. M., MacGillivray R. T., Woodworth R. C. Dual role of Lys206-Lys296 interaction in human transferrin N-lobe: iron-release trigger and anion-binding site. Biochemistry. 1999 Jul 27;38(30):9704–9711. doi: 10.1021/bi990134t. [DOI] [PubMed] [Google Scholar]
  10. He Q. Y., Mason A. B., Woodworth R. C. Iron release from recombinant N-lobe and single point Asp63 mutants of human transferrin by EDTA. Biochem J. 1997 Dec 1;328(Pt 2):439–445. doi: 10.1042/bj3280439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. He Q. Y., Mason A. B., Woodworth R. C., Tam B. M., MacGillivray R. T., Grady J. K., Chasteen N. D. Inequivalence of the two tyrosine ligands in the N-lobe of human serum transferrin. Biochemistry. 1997 Dec 2;36(48):14853–14860. doi: 10.1021/bi9719556. [DOI] [PubMed] [Google Scholar]
  12. He Q. Y., Mason A. B., Woodworth R. C., Tam B. M., MacGillivray R. T., Grady J. K., Chasteen N. D. Mutations at nonliganding residues Tyr-85 and Glu-83 in the N-lobe of human serum transferrin. Functional second shell effects. J Biol Chem. 1998 Jul 3;273(27):17018–17024. doi: 10.1074/jbc.273.27.17018. [DOI] [PubMed] [Google Scholar]
  13. He Q. Y., Mason A. B., Woodworth R. C., Tam B. M., Wadsworth T., MacGillivray R. T. Effects of mutations of aspartic acid 63 on the metal-binding properties of the recombinant N-lobe of human serum transferrin. Biochemistry. 1997 May 6;36(18):5522–5528. doi: 10.1021/bi963028p. [DOI] [PubMed] [Google Scholar]
  14. Jeffrey P. D., Bewley M. C., MacGillivray R. T., Mason A. B., Woodworth R. C., Baker E. N. Ligand-induced conformational change in transferrins: crystal structure of the open form of the N-terminal half-molecule of human transferrin. Biochemistry. 1998 Oct 6;37(40):13978–13986. doi: 10.1021/bi9812064. [DOI] [PubMed] [Google Scholar]
  15. Li Y., Harris W. R. Iron removal from monoferric human serum transferrins by 1, 2-dimethyl-3-hydroxypyridin-4-one, 1-hydroxypyridin-2-one and acetohydroxamic acid. Biochim Biophys Acta. 1998 Sep 8;1387(1-2):89–102. doi: 10.1016/s0167-4838(98)00109-5. [DOI] [PubMed] [Google Scholar]
  16. Li Y., Harris W. R., Maxwell A., MacGillivray R. T., Brown T. Kinetic studies on the removal of iron and aluminum from recombinant and site-directed mutant N-lobe half transferrins. Biochemistry. 1998 Oct 6;37(40):14157–14166. doi: 10.1021/bi9810454. [DOI] [PubMed] [Google Scholar]
  17. MacGillivray R. T., Bewley M. C., Smith C. A., He Q. Y., Mason A. B., Woodworth R. C., Baker E. N. Mutation of the iron ligand His 249 to Glu in the N-lobe of human transferrin abolishes the dilysine "trigger" but does not significantly affect iron release. Biochemistry. 2000 Feb 15;39(6):1211–1216. doi: 10.1021/bi991522y. [DOI] [PubMed] [Google Scholar]
  18. MacGillivray R. T., Moore S. A., Chen J., Anderson B. F., Baker H., Luo Y., Bewley M., Smith C. A., Murphy M. E., Wang Y. Two high-resolution crystal structures of the recombinant N-lobe of human transferrin reveal a structural change implicated in iron release. Biochemistry. 1998 Jun 2;37(22):7919–7928. doi: 10.1021/bi980355j. [DOI] [PubMed] [Google Scholar]
  19. Marques H. M., Walton T., Egan T. J. Release of iron from C-terminal monoferric transferrin to phosphate and pyrophosphate at pH 5.5 proceeds through two pathways. J Inorg Biochem. 1995 Jan;57(1):11–21. doi: 10.1016/0162-0134(94)00009-y. [DOI] [PubMed] [Google Scholar]
  20. Nelson R. M., Long G. L. A general method of site-specific mutagenesis using a modification of the Thermus aquaticus polymerase chain reaction. Anal Biochem. 1989 Jul;180(1):147–151. doi: 10.1016/0003-2697(89)90103-6. [DOI] [PubMed] [Google Scholar]
  21. Steinlein L. M., Ligman C. M., Kessler S., Ikeda R. A. Iron release is reduced by mutations of lysines 206 and 296 in recombinant N-terminal half-transferrin. Biochemistry. 1998 Sep 29;37(39):13696–13703. doi: 10.1021/bi980318s. [DOI] [PubMed] [Google Scholar]
  22. Wessling-Resnick M. Biochemistry of iron uptake. Crit Rev Biochem Mol Biol. 1999;34(5):285–314. doi: 10.1080/10409239991209318. [DOI] [PubMed] [Google Scholar]
  23. Williams J., Chasteen N. D., Moreton K. The effect of salt concentration on the iron-binding properties of human transferrin. Biochem J. 1982 Mar 1;201(3):527–532. doi: 10.1042/bj2010527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Woodworth R. C., Mason A. B., Funk W. D., MacGillivray R. T. Expression and initial characterization of five site-directed mutants of the N-terminal half-molecule of human transferrin. Biochemistry. 1991 Nov 12;30(45):10824–10829. doi: 10.1021/bi00109a002. [DOI] [PubMed] [Google Scholar]
  25. Zak O., Aisen P., Crawley J. B., Joannou C. L., Patel K. J., Rafiq M., Evans R. W. Iron release from recombinant N-lobe and mutants of human transferrin. Biochemistry. 1995 Nov 7;34(44):14428–14434. doi: 10.1021/bi00044a020. [DOI] [PubMed] [Google Scholar]
  26. Zak O., Tam B., MacGillivray R. T., Aisen P. A kinetically active site in the C-lobe of human transferrin. Biochemistry. 1997 Sep 9;36(36):11036–11043. doi: 10.1021/bi970628v. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES