Abstract
The C-terminal module of xylanase 10A from Streptomyces lividans is a family 13 carbohydrate-binding module (CBM13). CBM13 binds mono- and oligo-saccharides with association constants of approximately 1x10(2) M(-1)-1x10(3) M(-1). It appears to be specific only for pyranose sugars. CBM13 binds insoluble and soluble xylan, holocellulose, pachyman, lichenan, arabinogalactan and laminarin. The association constant for binding to soluble xylan is (6.2+/-0. 6)x10(3)/mol of xylan polymer. Site-directed mutation indicates the involvement of three functional sites on CBM13 in binding to soluble xylan. The sites are similar in sequence, and are predicted to have similar structures, to the alpha, beta and gamma sites of ricin toxin B-chain, which is also in family 13. The affinity of a single binding site on CBM13 for soluble xylan is only approximately (0. 5+/-0.1)x10(3)/mol of xylan. The binding of CBM13 to soluble xylan involves additive and co-operative interactions between the three binding sites. This mechanism of binding has not previously been reported for CBMs binding polysaccharides. CBM13 is the first bacterial module from family 13 to be described in detail.
Full Text
The Full Text of this article is available as a PDF (256.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baenziger J. U., Fiete D. Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J Biol Chem. 1979 Oct 10;254(19):9795–9799. [PubMed] [Google Scholar]
- Betzler M., Dyson P., Schrempf H. Relationship of an unstable argG gene to a 5.7-kilobase amplifiable DNA sequence in Streptomyces lividans 66. J Bacteriol. 1987 Oct;169(10):4804–4810. doi: 10.1128/jb.169.10.4804-4810.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blake J. D., Richards G. N. An examination of some methods for fractionation of plant hemicelluloses. Carbohydr Res. 1971 Apr;17(2):253–268. doi: 10.1016/s0008-6215(00)82533-1. [DOI] [PubMed] [Google Scholar]
- Bolam D. N., Ciruela A., McQueen-Mason S., Simpson P., Williamson M. P., Rixon J. E., Boraston A., Hazlewood G. P., Gilbert H. J. Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J. 1998 May 1;331(Pt 3):775–781. doi: 10.1042/bj3310775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brun E., Moriaud F., Gans P., Blackledge M. J., Barras F., Marion D. Solution structure of the cellulose-binding domain of the endoglucanase Z secreted by Erwinia chrysanthemi. Biochemistry. 1997 Dec 23;36(51):16074–16086. doi: 10.1021/bi9718494. [DOI] [PubMed] [Google Scholar]
- Coutinho J. B., Gilkes N. R., Warren R. A., Kilburn D. G., Miller R. C., Jr The binding of Cellulomonas fimi endoglucanase C (CenC) to cellulose and Sephadex is mediated by the N-terminal repeats. Mol Microbiol. 1992 May;6(9):1243–1252. doi: 10.1111/j.1365-2958.1992.tb01563.x. [DOI] [PubMed] [Google Scholar]
- Das M. K., Khan M. I., Surolia A. Fluorimetric studies of the binding of Momordica charantia (bitter gourd) lectin with ligands. Biochem J. 1981 Apr 1;195(1):341–343. doi: 10.1042/bj1950341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dupont C., Roberge M., Shareck F., Morosoli R., Kluepfel D. Substrate-binding domains of glycanases from Streptomyces lividans: characterization of a new family of xylan-binding domains. Biochem J. 1998 Feb 15;330(Pt 1):41–45. doi: 10.1042/bj3300041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eftink M. R. Fluorescence methods for studying equilibrium macromolecule-ligand interactions. Methods Enzymol. 1997;278:221–257. doi: 10.1016/s0076-6879(97)78013-3. [DOI] [PubMed] [Google Scholar]
- Eftink M. R., Ghiron C. A. Fluorescence quenching studies with proteins. Anal Biochem. 1981 Jul 1;114(2):199–227. doi: 10.1016/0003-2697(81)90474-7. [DOI] [PubMed] [Google Scholar]
- Frankel A. E., Burbage C., Fu T., Tagge E., Chandler J., Willingham M. C. Ricin toxin contains at least three galactose-binding sites located in B chain subdomains 1 alpha, 1 beta, and 2 gamma. Biochemistry. 1996 Nov 26;35(47):14749–14756. doi: 10.1021/bi960798s. [DOI] [PubMed] [Google Scholar]
- Frankel A., Tagge E., Chandler J., Burbage C., Willingham M. Double-site ricin B chain mutants retain galactose binding. Protein Eng. 1996 Apr;9(4):371–379. doi: 10.1093/protein/9.4.371. [DOI] [PubMed] [Google Scholar]
- Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Jr, Warren R. A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991 Jun;55(2):303–315. doi: 10.1128/mr.55.2.303-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilkes N. R., Jervis E., Henrissat B., Tekant B., Miller R. C., Jr, Warren R. A., Kilburn D. G. The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J Biol Chem. 1992 Apr 5;267(10):6743–6749. [PubMed] [Google Scholar]
- Graham R. W., Greenwood J. M., Warren R. A., Kilburn D. G., Trimbur D. E. The pTugA and pTugAS vectors for high-level expression of cloned genes in Escherichia coli. Gene. 1995 May 26;158(1):51–54. doi: 10.1016/0378-1119(95)00165-3. [DOI] [PubMed] [Google Scholar]
- Heredia A., Jiménez A., Guillén R. Composition of plant cell walls. Z Lebensm Unters Forsch. 1995;200(1):24–31. doi: 10.1007/BF01192903. [DOI] [PubMed] [Google Scholar]
- Hirabayashi J., Dutta S. K., Kasai K. Novel galactose-binding proteins in Annelida. Characterization of 29-kDa tandem repeat-type lectins from the earthworm Lumbricus terrestris. J Biol Chem. 1998 Jun 5;273(23):14450–14460. doi: 10.1074/jbc.273.23.14450. [DOI] [PubMed] [Google Scholar]
- Houston L. L., Dooley T. P. Binding of two molecules of 4-methylumbelliferyl galactose or 4-methylumbelliferyl N-acetylgalactosamine to the B chains of ricin and Ricinus communis agglutinin and to purified ricin B chain. J Biol Chem. 1982 Apr 25;257(8):4147–4151. [PubMed] [Google Scholar]
- Irwin D., Shin D. H., Zhang S., Barr B. K., Sakon J., Karplus P. A., Wilson D. B. Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol. 1998 Apr;180(7):1709–1714. doi: 10.1128/jb.180.7.1709-1714.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson P. E., Joshi M. D., Tomme P., Kilburn D. G., McIntosh L. P. Structure of the N-terminal cellulose-binding domain of Cellulomonas fimi CenC determined by nuclear magnetic resonance spectroscopy. Biochemistry. 1996 Nov 12;35(45):14381–14394. doi: 10.1021/bi961612s. [DOI] [PubMed] [Google Scholar]
- Johnson P. E., Tomme P., Joshi M. D., McIntosh L. P. Interaction of soluble cellooligosaccharides with the N-terminal cellulose-binding domain of Cellulomonas fimi CenC 2. NMR and ultraviolet absorption spectroscopy. Biochemistry. 1996 Nov 5;35(44):13895–13906. doi: 10.1021/bi961186a. [DOI] [PubMed] [Google Scholar]
- Lever M. Colorimetric and fluorometric carbohydrate determination with p-hydroxybenzoic acid hydrazide. Biochem Med. 1973 Apr;7(2):274–281. doi: 10.1016/0006-2944(73)90083-5. [DOI] [PubMed] [Google Scholar]
- Linder M., Mattinen M. L., Kontteli M., Lindeberg G., Ståhlberg J., Drakenberg T., Reinikainen T., Pettersson G., Annila A. Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Sci. 1995 Jun;4(6):1056–1064. doi: 10.1002/pro.5560040604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lis Halina, Sharon Nathan. Lectins: Carbohydrate-Specific Proteins That Mediate Cellular Recognition. Chem Rev. 1998 Apr 2;98(2):637–674. doi: 10.1021/cr940413g. [DOI] [PubMed] [Google Scholar]
- Little E., Bork P., Doolittle R. F. Tracing the spread of fibronectin type III domains in bacterial glycohydrolases. J Mol Evol. 1994 Dec;39(6):631–643. doi: 10.1007/BF00160409. [DOI] [PubMed] [Google Scholar]
- Mach H., Middaugh C. R., Lewis R. V. Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins. Anal Biochem. 1992 Jan;200(1):74–80. doi: 10.1016/0003-2697(92)90279-g. [DOI] [PubMed] [Google Scholar]
- Quiocho F. A. Carbohydrate-binding proteins: tertiary structures and protein-sugar interactions. Annu Rev Biochem. 1986;55:287–315. doi: 10.1146/annurev.bi.55.070186.001443. [DOI] [PubMed] [Google Scholar]
- Quiocho F. A. Molecular features and basic understanding of protein-carbohydrate interactions: the arabinose-binding protein-sugar complex. Curr Top Microbiol Immunol. 1988;139:135–148. doi: 10.1007/978-3-642-46641-0_5. [DOI] [PubMed] [Google Scholar]
- Rutenber E., Ready M., Robertus J. D. Structure and evolution of ricin B chain. Nature. 1987 Apr 9;326(6113):624–626. doi: 10.1038/326624a0. [DOI] [PubMed] [Google Scholar]
- Rutenber E., Robertus J. D. Structure of ricin B-chain at 2.5 A resolution. Proteins. 1991;10(3):260–269. doi: 10.1002/prot.340100310. [DOI] [PubMed] [Google Scholar]
- Selvendran R. R., O'Neill M. A. Isolation and analysis of cell walls from plant material. Methods Biochem Anal. 1987;32:25–153. doi: 10.1002/9780470110539.ch2. [DOI] [PubMed] [Google Scholar]
- Sharma S., Bharadwaj S., Surolia A., Podder S. K. Evaluation of the stoichiometry and energetics of carbohydrate binding to Ricinus communis agglutinin: a calorimetric study. Biochem J. 1998 Aug 1;333(Pt 3):539–542. doi: 10.1042/bj3330539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simpson P. J., Bolam D. N., Cooper A., Ciruela A., Hazlewood G. P., Gilbert H. J., Williamson M. P. A family IIb xylan-binding domain has a similar secondary structure to a homologous family IIa cellulose-binding domain but different ligand specificity. Structure. 1999 Jul 15;7(7):853–864. doi: 10.1016/s0969-2126(99)80108-7. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomme P., Boraston A., McLean B., Kormos J., Creagh A. L., Sturch K., Gilkes N. R., Haynes C. A., Warren R. A., Kilburn D. G. Characterization and affinity applications of cellulose-binding domains. J Chromatogr B Biomed Sci Appl. 1998 Sep 11;715(1):283–296. doi: 10.1016/s0378-4347(98)00053-x. [DOI] [PubMed] [Google Scholar]
- Tomme P., Creagh A. L., Kilburn D. G., Haynes C. A. Interaction of polysaccharides with the N-terminal cellulose-binding domain of Cellulomonas fimi CenC. 1. Binding specificity and calorimetric analysis. Biochemistry. 1996 Nov 5;35(44):13885–13894. doi: 10.1021/bi961185i. [DOI] [PubMed] [Google Scholar]
- Tormo J., Lamed R., Chirino A. J., Morag E., Bayer E. A., Shoham Y., Steitz T. A. Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J. 1996 Nov 1;15(21):5739–5751. [PMC free article] [PubMed] [Google Scholar]
- Vincent P., Shareck F., Dupont C., Morosoli R., Kluepfel D. New alpha-L-arabinofuranosidase produced by Streptomyces lividans: cloning and DNA sequence of the abfB gene and characterization of the enzyme. Biochem J. 1997 Mar 15;322(Pt 3):845–852. doi: 10.1042/bj3220845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weis W. I., Drickamer K. Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem. 1996;65:441–473. doi: 10.1146/annurev.bi.65.070196.002301. [DOI] [PubMed] [Google Scholar]
- Xu G. Y., Ong E., Gilkes N. R., Kilburn D. G., Muhandiram D. R., Harris-Brandts M., Carver J. P., Kay L. E., Harvey T. S. Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry. 1995 May 30;34(21):6993–7009. [PubMed] [Google Scholar]
- Yamasaki N., Absar N., Funatsu G. The interaction of Abrus precatorius agglutinin with saccharides as analyzed by fluorescence spectroscopy. J Biochem. 1989 May;105(5):708–711. doi: 10.1093/oxfordjournals.jbchem.a122732. [DOI] [PubMed] [Google Scholar]
- Zentz C., Frénoy J. P., Bourrillon R. Binding of galactose and lactose to ricin. Equilibrium studies. Biochim Biophys Acta. 1978 Sep 26;536(1):18–26. doi: 10.1016/0005-2795(78)90047-8. [DOI] [PubMed] [Google Scholar]