Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Oct 1;351(Pt 1):1–12. doi: 10.1042/0264-6021:3510001

Amino acid regulation of gene expression.

P Fafournoux 1, A Bruhat 1, C Jousse 1
PMCID: PMC1221331  PMID: 10998343

Abstract

The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression.

Full Text

The Full Text of this article is available as a PDF (162.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adibi S. A. Influence of dietary deprivations on plasma concentration of free amino acids of man. J Appl Physiol. 1968 Jul;25(1):52–57. doi: 10.1152/jappl.1968.25.1.52. [DOI] [PubMed] [Google Scholar]
  2. Andrulis I. L., Chen J., Ray P. N. Isolation of human cDNAs for asparagine synthetase and expression in Jensen rat sarcoma cells. Mol Cell Biol. 1987 Jul;7(7):2435–2443. doi: 10.1128/mcb.7.7.2435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andrulis I. L., Hatfield G. W., Arfin S. M. Asparaginyl-tRNA aminoacylation levels and asparagine synthetase expression in cultured Chinese hamster ovary cells. J Biol Chem. 1979 Nov 10;254(21):10629–10633. [PMC free article] [PubMed] [Google Scholar]
  4. Aoki T. T., Brennan M. F., Müller W. A., Soeldner J. S., Alpert J. S., Saltz S. B., Kaufmann R. L., Tan M. H., Cahill G. F., Jr Amino acid levels across normal forearm muscle and splanchnic bed after a protein meal. Am J Clin Nutr. 1976 Apr;29(4):340–350. doi: 10.1093/ajcn/29.4.340. [DOI] [PubMed] [Google Scholar]
  5. Attaix D., Combaret L., Tilignac T., Taillandier D. Adaptation of the ubiquitin-proteasome proteolytic pathway in cancer cachexia. Mol Biol Rep. 1999 Apr;26(1-2):77–82. doi: 10.1023/a:1006961919775. [DOI] [PubMed] [Google Scholar]
  6. Austin S. A., Clemens M. J. The effects of haem on translational control of protein synthesis in cell-free extracts from fed and lysine-derived Ehrlich ascites tumour cells. Eur J Biochem. 1981 Jul;117(3):601–607. doi: 10.1111/j.1432-1033.1981.tb06380.x. [DOI] [PubMed] [Google Scholar]
  7. Baertl J. M., Placko R. P., Graham G. G. Serum proteins and plasma free amino acids in severe malnutrition. Am J Clin Nutr. 1974 Jul;27(7):733–742. doi: 10.1093/ajcn/27.7.733. [DOI] [PubMed] [Google Scholar]
  8. Baker D. H., Becker D. E., Norton H. W., Jensen A. H., Harmon B. G. Some qualitative amino acid needs of adult swine for maintenance. J Nutr. 1966 Apr;88(4):382–390. doi: 10.1093/jn/88.4.382. [DOI] [PubMed] [Google Scholar]
  9. Baker J., Liu J. P., Robertson E. J., Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993 Oct 8;75(1):73–82. [PubMed] [Google Scholar]
  10. Barbosa-Tessmann I. P., Chen C., Zhong C., Schuster S. M., Nick H. S., Kilberg M. S. Activation of the unfolded protein response pathway induces human asparagine synthetase gene expression. J Biol Chem. 1999 Oct 29;274(44):31139–31144. doi: 10.1074/jbc.274.44.31139. [DOI] [PubMed] [Google Scholar]
  11. Beretta L., Gingras A. C., Svitkin Y. V., Hall M. N., Sonenberg N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 1996 Feb 1;15(3):658–664. [PMC free article] [PubMed] [Google Scholar]
  12. Berlanga J. J., Santoyo J., De Haro C. Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2alpha kinase. Eur J Biochem. 1999 Oct;265(2):754–762. doi: 10.1046/j.1432-1327.1999.00780.x. [DOI] [PubMed] [Google Scholar]
  13. Binoux M. The IGF system in metabolism regulation. Diabete Metab. 1995 Dec;21(5):330–337. [PubMed] [Google Scholar]
  14. Biolo G., Toigo G., Ciocchi B., Situlin R., Iscra F., Gullo A., Guarnieri G. Metabolic response to injury and sepsis: changes in protein metabolism. Nutrition. 1997 Sep;13(9 Suppl):52S–57S. doi: 10.1016/s0899-9007(97)00206-2. [DOI] [PubMed] [Google Scholar]
  15. Blommaart E. F., Luiken J. J., Meijer A. J. Autophagic proteolysis: control and specificity. Histochem J. 1997 May;29(5):365–385. doi: 10.1023/a:1026486801018. [DOI] [PubMed] [Google Scholar]
  16. Blommaart E. F., Luiken J. J., Meijer A. J. Regulation of hepatic protein degradation. Contrib Nephrol. 1997;121:101–108. doi: 10.1159/000059859. [DOI] [PubMed] [Google Scholar]
  17. Boyce F. M., Anderson G. M., Rusk C. D., Freytag S. O. Human argininosuccinate synthetase minigenes are subject to arginine-mediated repression but not to trans induction. Mol Cell Biol. 1986 Apr;6(4):1244–1252. doi: 10.1128/mcb.6.4.1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Brismar K., Gutniak M., Povoa G., Werner S., Hall K. Insulin regulates the 35 kDa IGF binding protein in patients with diabetes mellitus. J Endocrinol Invest. 1988 Sep;11(8):599–602. doi: 10.1007/BF03350189. [DOI] [PubMed] [Google Scholar]
  19. Brown E. J., Beal P. A., Keith C. T., Chen J., Shin T. B., Schreiber S. L. Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature. 1995 Oct 5;377(6548):441–446. doi: 10.1038/377441a0. [DOI] [PubMed] [Google Scholar]
  20. Brown E. J., Schreiber S. L. A signaling pathway to translational control. Cell. 1996 Aug 23;86(4):517–520. doi: 10.1016/s0092-8674(00)80125-7. [DOI] [PubMed] [Google Scholar]
  21. Bruhat A., Jousse C., Fafournoux P. Amino acid limitation regulates gene expression. Proc Nutr Soc. 1999 Aug;58(3):625–632. doi: 10.1017/s0029665199000828. [DOI] [PubMed] [Google Scholar]
  22. Bruhat A., Jousse C., Wang X. Z., Ron D., Ferrara M., Fafournoux P. Amino acid limitation induces expression of CHOP, a CCAAT/enhancer binding protein-related gene, at both transcriptional and post-transcriptional levels. J Biol Chem. 1997 Jul 11;272(28):17588–17593. doi: 10.1074/jbc.272.28.17588. [DOI] [PubMed] [Google Scholar]
  23. Brunn G. J., Hudson C. C., Sekulić A., Williams J. M., Hosoi H., Houghton P. J., Lawrence J. C., Jr, Abraham R. T. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science. 1997 Jul 4;277(5322):99–101. doi: 10.1126/science.277.5322.99. [DOI] [PubMed] [Google Scholar]
  24. Burston J., McGivan J. Identification and partial characterization of a novel membrane glycoprotein induced by amino acid deprivation in renal epithelial cells. Biochem J. 1997 Mar 1;322(Pt 2):551–555. doi: 10.1042/bj3220551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Busby W. H., Snyder D. K., Clemmons D. R. Radioimmunoassay of a 26,000-dalton plasma insulin-like growth factor-binding protein: control by nutritional variables. J Clin Endocrinol Metab. 1988 Dec;67(6):1225–1230. doi: 10.1210/jcem-67-6-1225. [DOI] [PubMed] [Google Scholar]
  26. Chen Z. P., Chen K. Y. Mechanism of regulation of ornithine decarboxylase gene expression by asparagine in a variant mouse neuroblastoma cell line. J Biol Chem. 1992 Apr 5;267(10):6946–6951. [PubMed] [Google Scholar]
  27. Chiles T. C., Laine R. O., Shay N. F., Handlogten M. E., Nick H. S., Kilberg M. S. Enhanced mRNA content in response to amino acid starvation for a 73 kDa protein of the inner mitochondrial membrane. Biochem Biophys Res Commun. 1993 Jun 30;193(3):1068–1075. doi: 10.1006/bbrc.1993.1734. [DOI] [PubMed] [Google Scholar]
  28. Chua B. H. Specificity of leucine effect on protein degradation in perfused rat heart. J Mol Cell Cardiol. 1994 Jun;26(6):743–751. doi: 10.1006/jmcc.1994.1089. [DOI] [PubMed] [Google Scholar]
  29. Cianflone K., Zhang Z., Vu H., Kohen-Avramoglu R., Kalant D., Sniderman A. D. The effect of individual amino acids on ApoB100 and Lp(a) secretion by HepG2 cells. J Biol Chem. 1996 Nov 15;271(46):29136–29145. doi: 10.1074/jbc.271.46.29136. [DOI] [PubMed] [Google Scholar]
  30. Dennis P. B., Fumagalli S., Thomas G. Target of rapamycin (TOR): balancing the opposing forces of protein synthesis and degradation. Curr Opin Genet Dev. 1999 Feb;9(1):49–54. doi: 10.1016/s0959-437x(99)80007-0. [DOI] [PubMed] [Google Scholar]
  31. Dever T. E., Feng L., Wek R. C., Cigan A. M., Donahue T. F., Hinnebusch A. G. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell. 1992 Feb 7;68(3):585–596. doi: 10.1016/0092-8674(92)90193-g. [DOI] [PubMed] [Google Scholar]
  32. Donovan S. M., Atilano L. C., Hintz R. L., Wilson D. M., Rosenfeld R. G. Differential regulation of the insulin-like growth factors (IGF-I and -II) and IGF binding proteins during malnutrition in the neonatal rat. Endocrinology. 1991 Jul;129(1):149–157. doi: 10.1210/endo-129-1-149. [DOI] [PubMed] [Google Scholar]
  33. Dudek S. M., Semenkovich C. F. Essential amino acids regulate fatty acid synthase expression through an uncharged transfer RNA-dependent mechanism. J Biol Chem. 1995 Dec 8;270(49):29323–29329. doi: 10.1074/jbc.270.49.29323. [DOI] [PubMed] [Google Scholar]
  34. Fafournoux P., Remesy C., Demigne C. Fluxes and membrane transport of amino acids in rat liver under different protein diets. Am J Physiol. 1990 Nov;259(5 Pt 1):E614–E625. doi: 10.1152/ajpendo.1990.259.5.E614. [DOI] [PubMed] [Google Scholar]
  35. Fawcett T. W., Eastman H. B., Martindale J. L., Holbrook N. J. Physical and functional association between GADD153 and CCAAT/enhancer-binding protein beta during cellular stress. J Biol Chem. 1996 Jun 14;271(24):14285–14289. doi: 10.1074/jbc.271.24.14285. [DOI] [PubMed] [Google Scholar]
  36. Feng B., Shiber S. K., Max S. R. Glutamine regulates glutamine synthetase expression in skeletal muscle cells in culture. J Cell Physiol. 1990 Nov;145(2):376–380. doi: 10.1002/jcp.1041450224. [DOI] [PubMed] [Google Scholar]
  37. Ferrer-Martínez A., Felipe A., Mata J. F., Casado F. J., Pastor-Anglada M. Molecular cloning of a bovine renal G-protein coupled receptor gene (bRGR): regulation of bRGR mRNA levels by amino acid availability. Biochem Biophys Res Commun. 1997 Sep 8;238(1):107–112. doi: 10.1006/bbrc.1997.7185. [DOI] [PubMed] [Google Scholar]
  38. Fleming J. V., Hay S. M., Harries D. N., Rees W. D. Effects of nutrient deprivation and differentiation on the expression of growth-arrest genes (gas and gadd) in F9 embryonal carcinoma cells. Biochem J. 1998 Feb 15;330(Pt 1):573–579. doi: 10.1042/bj3300573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Fornace A. J., Jr, Alamo I., Jr, Hollander M. C. DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8800–8804. doi: 10.1073/pnas.85.23.8800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Foufelle F., Girard J., Ferré P. Glucose regulation of gene expression. Curr Opin Clin Nutr Metab Care. 1998 Jul;1(4):323–328. doi: 10.1097/00075197-199807000-00002. [DOI] [PubMed] [Google Scholar]
  41. Fox H. L., Kimball S. R., Jefferson L. S., Lynch C. J. Amino acids stimulate phosphorylation of p70S6k and organization of rat adipocytes into multicellular clusters. Am J Physiol. 1998 Jan;274(1 Pt 1):C206–C213. doi: 10.1152/ajpcell.1998.274.1.C206. [DOI] [PubMed] [Google Scholar]
  42. Fox H. L., Pham P. T., Kimball S. R., Jefferson L. S., Lynch C. J. Amino acid effects on translational repressor 4E-BP1 are mediated primarily by L-leucine in isolated adipocytes. Am J Physiol. 1998 Nov;275(5 Pt 1):C1232–C1238. doi: 10.1152/ajpcell.1998.275.5.C1232. [DOI] [PubMed] [Google Scholar]
  43. Gay E., Seurin D., Babajko S., Doublier S., Cazillis M., Binoux M. Liver-specific expression of human insulin-like growth factor binding protein-1 in transgenic mice: repercussions on reproduction, ante- and perinatal mortality and postnatal growth. Endocrinology. 1997 Jul;138(7):2937–2947. doi: 10.1210/endo.138.7.5282. [DOI] [PubMed] [Google Scholar]
  44. Gazzola G. C., Dall'Asta V., Guidotti G. G. Adaptive regulation of amino acid transport in cultured human fibroblasts. Sites and mechanism of action. J Biol Chem. 1981 Apr 10;256(7):3191–3198. [PubMed] [Google Scholar]
  45. Gazzola G. C., Franchi R., Saibene V., Ronchi P., Guidotti G. G. Regulation of amino acid transport in chick embryo heart cells. I. Adaptive system of mediation for neutral amino acids. Biochim Biophys Acta. 1972 May 9;266(2):407–421. doi: 10.1016/0005-2736(72)90097-1. [DOI] [PubMed] [Google Scholar]
  46. Gong S. S., Guerrini L., Basilico C. Regulation of asparagine synthetase gene expression by amino acid starvation. Mol Cell Biol. 1991 Dec;11(12):6059–6066. doi: 10.1128/mcb.11.12.6059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Gray N. K., Wickens M. Control of translation initiation in animals. Annu Rev Cell Dev Biol. 1998;14:399–458. doi: 10.1146/annurev.cellbio.14.1.399. [DOI] [PubMed] [Google Scholar]
  48. Grimble R. F., Whitehead R. G. Fasting serum-aminoacid patterns in kwashiorkor and after administration of different levels of protein. Lancet. 1970 May 2;1(7653):918–920. doi: 10.1016/s0140-6736(70)91047-0. [DOI] [PubMed] [Google Scholar]
  49. Guerrini L., Gong S. S., Mangasarian K., Basilico C. Cis- and trans-acting elements involved in amino acid regulation of asparagine synthetase gene expression. Mol Cell Biol. 1993 Jun;13(6):3202–3212. doi: 10.1128/mcb.13.6.3202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Hara K., Yonezawa K., Kozlowski M. T., Sugimoto T., Andrabi K., Weng Q. P., Kasuga M., Nishimoto I., Avruch J. Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem. 1997 Oct 17;272(42):26457–26463. doi: 10.1074/jbc.272.42.26457. [DOI] [PubMed] [Google Scholar]
  51. Hara K., Yonezawa K., Weng Q. P., Kozlowski M. T., Belham C., Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem. 1998 Jun 5;273(23):14484–14494. doi: 10.1074/jbc.273.23.14484. [DOI] [PubMed] [Google Scholar]
  52. Harper A. E., Rogers Q. R. Amino acid imbalance. Proc Nutr Soc. 1965;24(2):173–190. doi: 10.1079/pns19650032. [DOI] [PubMed] [Google Scholar]
  53. Hershko A., Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–479. doi: 10.1146/annurev.biochem.67.1.425. [DOI] [PubMed] [Google Scholar]
  54. Hinnebusch A. G. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev. 1988 Jun;52(2):248–273. doi: 10.1128/mr.52.2.248-273.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Hinnebusch A. G. The eIF-2 alpha kinases: regulators of protein synthesis in starvation and stress. Semin Cell Biol. 1994 Dec;5(6):417–426. doi: 10.1006/scel.1994.1049. [DOI] [PubMed] [Google Scholar]
  56. Hitomi Y., Ito A., Naito Y., Yoshida A. Liver-specific induction of ribosomal protein gene expression by amino acid starvation in rats. Biosci Biotechnol Biochem. 1993 Jul;57(7):1216–1217. doi: 10.1271/bbb.57.1216. [DOI] [PubMed] [Google Scholar]
  57. Hutson R. G., Kilberg M. S. Cloning of rat asparagine synthetase and specificity of the amino acid-dependent control of its mRNA content. Biochem J. 1994 Dec 15;304(Pt 3):745–750. doi: 10.1042/bj3040745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Häussinger D. The role of cellular hydration in the regulation of cell function. Biochem J. 1996 Feb 1;313(Pt 3):697–710. doi: 10.1042/bj3130697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Iiboshi Y., Papst P. J., Kawasome H., Hosoi H., Abraham R. T., Houghton P. J., Terada N. Amino acid-dependent control of p70(s6k). Involvement of tRNA aminoacylation in the regulation. J Biol Chem. 1999 Jan 8;274(2):1092–1099. doi: 10.1074/jbc.274.2.1092. [DOI] [PubMed] [Google Scholar]
  60. Jackson M. J., Allen S. J., Beaudet A. L., O'Brien W. E. Metabolite regulation of argininosuccinate synthetase in cultured human cells. J Biol Chem. 1988 Nov 5;263(31):16388–16394. [PubMed] [Google Scholar]
  61. Jacoby L. B. Adaptation of cultured human lymphoblasts to growth in citrulline. Exp Cell Res. 1974 Mar 15;84(1):167–174. doi: 10.1016/0014-4827(74)90393-0. [DOI] [PubMed] [Google Scholar]
  62. Jeejeebhoy K. N. Protein nutrition in clinical practice. Br Med Bull. 1981 Jan;37(1):11–17. doi: 10.1093/oxfordjournals.bmb.a071669. [DOI] [PubMed] [Google Scholar]
  63. Jeevanandam M., Horowitz G. D., Lowry S. F., Brennan M. F. Cancer cachexia and protein metabolism. Lancet. 1984 Jun 30;1(8392):1423–1426. doi: 10.1016/s0140-6736(84)91929-9. [DOI] [PubMed] [Google Scholar]
  64. Jefferies H. B., Fumagalli S., Dennis P. B., Reinhard C., Pearson R. B., Thomas G. Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. EMBO J. 1997 Jun 16;16(12):3693–3704. doi: 10.1093/emboj/16.12.3693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Jefferies H. B., Reinhard C., Kozma S. C., Thomas G. Rapamycin selectively represses translation of the "polypyrimidine tract" mRNA family. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4441–4445. doi: 10.1073/pnas.91.10.4441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Jousse C., Bruhat A., Ferrara M., Fafournoux P. Evidence for multiple signaling pathways in the regulation of gene expression by amino acids in human cell lines. J Nutr. 2000 Jun;130(6):1555–1560. doi: 10.1093/jn/130.6.1555. [DOI] [PubMed] [Google Scholar]
  67. Jousse C., Bruhat A., Ferrara M., Fafournoux P. Physiological concentration of amino acids regulates insulin-like-growth-factor-binding protein 1 expression. Biochem J. 1998 Aug 15;334(Pt 1):147–153. doi: 10.1042/bj3340147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Jousse C., Bruhat A., Harding H. P., Ferrara M., Ron D., Fafournoux P. Amino acid limitation regulates CHOP expression through a specific pathway independent of the unfolded protein response. FEBS Lett. 1999 Apr 9;448(2-3):211–216. doi: 10.1016/s0014-5793(99)00373-7. [DOI] [PubMed] [Google Scholar]
  69. KUMTA U. S., HARPER A. E. Amino acid balance and imbalance. IX. Effect of amino acid imbalance on blood amino acid pattern. Proc Soc Exp Biol Med. 1962 Jul;110:512–517. doi: 10.3181/00379727-110-27566. [DOI] [PubMed] [Google Scholar]
  70. Kanamoto R., Boyle S. M., Oka T., Hayashi S. Molecular mechanisms of the synergistic induction of ornithine decarboxylase by asparagine and glucagon in primary cultured hepatocytes. J Biol Chem. 1987 Oct 25;262(30):14801–14805. [PubMed] [Google Scholar]
  71. Kawasome H., Papst P., Webb S., Keller G. M., Johnson G. L., Gelfand E. W., Terada N. Targeted disruption of p70(s6k) defines its role in protein synthesis and rapamycin sensitivity. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5033–5038. doi: 10.1073/pnas.95.9.5033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Kilberg M. S., Hutson R. G., Laine R. O. Amino acid-regulated gene expression in eukaryotic cells. FASEB J. 1994 Jan;8(1):13–19. doi: 10.1096/fasebj.8.1.8299885. [DOI] [PubMed] [Google Scholar]
  73. Kilberg M. S., Stevens B. R., Novak D. A. Recent advances in mammalian amino acid transport. Annu Rev Nutr. 1993;13:137–165. doi: 10.1146/annurev.nu.13.070193.001033. [DOI] [PubMed] [Google Scholar]
  74. Kimball S. R., Antonetti D. A., Brawley R. M., Jefferson L. S. Mechanism of inhibition of peptide chain initiation by amino acid deprivation in perfused rat liver. Regulation involving inhibition of eukaryotic initiation factor 2 alpha phosphatase activity. J Biol Chem. 1991 Jan 25;266(3):1969–1976. [PubMed] [Google Scholar]
  75. Kimball S. R., Fabian J. R., Pavitt G. D., Hinnebusch A. G., Jefferson L. S. Regulation of guanine nucleotide exchange through phosphorylation of eukaryotic initiation factor eIF2alpha. Role of the alpha- and delta-subunits of eiF2b. J Biol Chem. 1998 May 22;273(21):12841–12845. doi: 10.1074/jbc.273.21.12841. [DOI] [PubMed] [Google Scholar]
  76. Kimball S. R., Shantz L. M., Horetsky R. L., Jefferson L. S. Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. J Biol Chem. 1999 Apr 23;274(17):11647–11652. doi: 10.1074/jbc.274.17.11647. [DOI] [PubMed] [Google Scholar]
  77. Kleijn M., Scheper G. C., Voorma H. O., Thomas A. A. Regulation of translation initiation factors by signal transduction. Eur J Biochem. 1998 May 1;253(3):531–544. doi: 10.1046/j.1432-1327.1998.2530531.x. [DOI] [PubMed] [Google Scholar]
  78. LONGENECKER J. B., HAUSE N. L. Relationship between plasma amino acids and composition of the ingested protein. II. A shortened procedure to determine plasma amino acid (PAA) ratios. Am J Clin Nutr. 1961 May-Jun;9:356–362. doi: 10.1093/ajcn/9.3.356. [DOI] [PubMed] [Google Scholar]
  79. Laine R. O., Shay N. F., Kilberg M. S. Nuclear retention of the induced mRNA following amino acid-dependent transcriptional regulation of mammalian ribosomal proteins L17 and S25. J Biol Chem. 1994 Apr 1;269(13):9693–9697. [PubMed] [Google Scholar]
  80. Lee P. D., Conover C. A., Powell D. R. Regulation and function of insulin-like growth factor-binding protein-1. Proc Soc Exp Biol Med. 1993 Oct;204(1):4–29. doi: 10.3181/00379727-204-43630. [DOI] [PubMed] [Google Scholar]
  81. Li L., Gotta S., Mauviel A., Varga J. L-tryptophan induces expression of collagenase gene in human fibroblasts: demonstration of enhanced AP-1 binding and AP-1 binding site-driven promoter activity. Cell Mol Biol Res. 1995;41(5):361–368. [PubMed] [Google Scholar]
  82. Liang X. H., Jackson S., Seaman M., Brown K., Kempkes B., Hibshoosh H., Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999 Dec 9;402(6762):672–676. doi: 10.1038/45257. [DOI] [PubMed] [Google Scholar]
  83. Lin T. A., Kong X., Saltiel A. R., Blackshear P. J., Lawrence J. C., Jr Control of PHAS-I by insulin in 3T3-L1 adipocytes. Synthesis, degradation, and phosphorylation by a rapamycin-sensitive and mitogen-activated protein kinase-independent pathway. J Biol Chem. 1995 Aug 4;270(31):18531–18538. doi: 10.1074/jbc.270.31.18531. [DOI] [PubMed] [Google Scholar]
  84. Marczak J. E., Brandriss M. C. Analysis of constitutive and noninducible mutations of the PUT3 transcriptional activator. Mol Cell Biol. 1991 May;11(5):2609–2619. doi: 10.1128/mcb.11.5.2609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Marten N. W., Burke E. J., Hayden J. M., Straus D. S. Effect of amino acid limitation on the expression of 19 genes in rat hepatoma cells. FASEB J. 1994 May;8(8):538–544. doi: 10.1096/fasebj.8.8.8181673. [DOI] [PubMed] [Google Scholar]
  86. May M. E., Buse M. G. Effects of branched-chain amino acids on protein turnover. Diabetes Metab Rev. 1989 May;5(3):227–245. doi: 10.1002/dmr.5610050303. [DOI] [PubMed] [Google Scholar]
  87. McGivan J. D., Pastor-Anglada M. Regulatory and molecular aspects of mammalian amino acid transport. Biochem J. 1994 Apr 15;299(Pt 2):321–334. doi: 10.1042/bj2990321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Millward J. Can we define indispensable amino acid requirements and assess protein quality in adults? J Nutr. 1994 Aug;124(8 Suppl):1509S–1516S. doi: 10.1093/jn/124.suppl_8.1509S. [DOI] [PubMed] [Google Scholar]
  89. Mizushima N., Noda T., Ohsumi Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J. 1999 Jul 15;18(14):3888–3896. doi: 10.1093/emboj/18.14.3888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Mueller P. P., Hinnebusch A. G. Multiple upstream AUG codons mediate translational control of GCN4. Cell. 1986 Apr 25;45(2):201–207. doi: 10.1016/0092-8674(86)90384-3. [DOI] [PubMed] [Google Scholar]
  91. Nicholson B., McGivan J. D. Induction of high affinity glutamate transport activity by amino acid deprivation in renal epithelial cells does not involve an increase in the amount of transporter protein. J Biol Chem. 1996 May 24;271(21):12159–12164. doi: 10.1074/jbc.271.21.12159. [DOI] [PubMed] [Google Scholar]
  92. Olsen D. S., Jordan B., Chen D., Wek R. C., Cavener D. R. Isolation of the gene encoding the Drosophila melanogaster homolog of the Saccharomyces cerevisiae GCN2 eIF-2alpha kinase. Genetics. 1998 Jul;149(3):1495–1509. doi: 10.1093/genetics/149.3.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Ooi G. T., Orlowski C. C., Brown A. L., Becker R. E., Unterman T. G., Rechler M. M. Different tissue distribution and hormonal regulation of messenger RNAs encoding rat insulin-like growth factor-binding proteins-1 and -2. Mol Endocrinol. 1990 Feb;4(2):321–328. doi: 10.1210/mend-4-2-321. [DOI] [PubMed] [Google Scholar]
  94. Pain V. M. Initiation of protein synthesis in eukaryotic cells. Eur J Biochem. 1996 Mar 15;236(3):747–771. doi: 10.1111/j.1432-1033.1996.00747.x. [DOI] [PubMed] [Google Scholar]
  95. Pain V. M. Translational control during amino acid starvation. Biochimie. 1994;76(8):718–728. doi: 10.1016/0300-9084(94)90076-0. [DOI] [PubMed] [Google Scholar]
  96. Palacín M., Estévez R., Bertran J., Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev. 1998 Oct;78(4):969–1054. doi: 10.1152/physrev.1998.78.4.969. [DOI] [PubMed] [Google Scholar]
  97. Patti M. E., Brambilla E., Luzi L., Landaker E. J., Kahn C. R. Bidirectional modulation of insulin action by amino acids. J Clin Invest. 1998 Apr 1;101(7):1519–1529. doi: 10.1172/JCI1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Paul G. L., Waegner A., Gaskins H. R., Shay N. F. Histidine availability alters glucagon gene expression in murine alphaTC6 cells. J Nutr. 1998 Jun;128(6):973–976. doi: 10.1093/jn/128.6.973. [DOI] [PubMed] [Google Scholar]
  99. Plakidou-Dymock S., McGivan J. D. Calreticulin--a stress protein induced in the renal epithelial cell line NBL-1 by amino acid deprivation. Cell Calcium. 1994 Jul;16(1):1–8. doi: 10.1016/s0143-4160(05)80002-8. [DOI] [PubMed] [Google Scholar]
  100. Pohjanpelto P., Hölttä E. Deprivation of a single amino acid induces protein synthesis-dependent increases in c-jun, c-myc, and ornithine decarboxylase mRNAs in Chinese hamster ovary cells. Mol Cell Biol. 1990 Nov;10(11):5814–5821. doi: 10.1128/mcb.10.11.5814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Proud C. G., Denton R. M. Molecular mechanisms for the control of translation by insulin. Biochem J. 1997 Dec 1;328(Pt 2):329–341. doi: 10.1042/bj3280329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Proud C. G. Protein phosphorylation in translational control. Curr Top Cell Regul. 1992;32:243–369. doi: 10.1016/b978-0-12-152832-4.50008-2. [DOI] [PubMed] [Google Scholar]
  103. Quillard M., Husson A., Lavoinne A. Glutamine increases argininosuccinate synthetase mRNA levels in rat hepatocytes. The involvement of cell swelling. Eur J Biochem. 1996 Feb 15;236(1):56–59. doi: 10.1111/j.1432-1033.1996.00056.x. [DOI] [PubMed] [Google Scholar]
  104. RICHARDSON L. R., HALE F., RITCHEY S. J. EFFECT OF FASTING AND LEVEL OF DIETARY PROTEIN ON FREE AMINO ACIDS IN PIG PLASMA. J Anim Sci. 1965 May;24:368–372. doi: 10.2527/jas1965.242368x. [DOI] [PubMed] [Google Scholar]
  105. Rabkin R., Tsao T., Shi J. D., Mortimore G. Amino acids regulate kidney cell protein breakdown. J Lab Clin Med. 1991 Jun;117(6):505–513. [PubMed] [Google Scholar]
  106. Rajkumar K., Barron D., Lewitt M. S., Murphy L. J. Growth retardation and hyperglycemia in insulin-like growth factor binding protein-1 transgenic mice. Endocrinology. 1995 Sep;136(9):4029–4034. doi: 10.1210/endo.136.9.7544274. [DOI] [PubMed] [Google Scholar]
  107. Rajkumar K., Dheen T., Krsek M., Murphy L. J. Impaired estrogen action in the uterus of insulin-like growth factor binding protein-1 transgenic mice. Endocrinology. 1996 Apr;137(4):1258–1264. doi: 10.1210/endo.137.4.8625897. [DOI] [PubMed] [Google Scholar]
  108. Rajkumar K., Krsek M., Dheen S. T., Murphy L. J. Impaired glucose homeostasis in insulin-like growth factor binding protein-1 transgenic mice. J Clin Invest. 1996 Oct 15;98(8):1818–1825. doi: 10.1172/JCI118982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Redpath N. T., Proud C. G. Molecular mechanisms in the control of translation by hormones and growth factors. Biochim Biophys Acta. 1994 Jan 13;1220(2):147–162. doi: 10.1016/0167-4889(94)90130-9. [DOI] [PubMed] [Google Scholar]
  110. Rennie M. J. Muscle protein turnover and the wasting due to injury and disease. Br Med Bull. 1985 Jul;41(3):257–264. doi: 10.1093/oxfordjournals.bmb.a072060. [DOI] [PubMed] [Google Scholar]
  111. Rinehart C. A., Jr, Canellakis E. S. Induction of ornithine decarboxylase activity by insulin and growth factors is mediated by amino acids. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4365–4368. doi: 10.1073/pnas.82.13.4365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. SCHIMKE R. T. ENZYMES OF ARGININE METABOLISM IN MAMMALIAN CELL CULTURE. I. REPRESSION OF ARGININOSUCCINATE SYNTHETASE AND ARGININOSUCCINASE. J Biol Chem. 1964 Jan;239:136–145. [PubMed] [Google Scholar]
  113. Santoyo J., Alcalde J., Méndez R., Pulido D., de Haro C. Cloning and characterization of a cDNA encoding a protein synthesis initiation factor-2alpha (eIF-2alpha) kinase from Drosophila melanogaster. Homology To yeast GCN2 protein kinase. J Biol Chem. 1997 May 9;272(19):12544–12550. doi: 10.1074/jbc.272.19.12544. [DOI] [PubMed] [Google Scholar]
  114. Shigemitsu K., Tsujishita Y., Hara K., Nanahoshi M., Avruch J., Yonezawa K. Regulation of translational effectors by amino acid and mammalian target of rapamycin signaling pathways. Possible involvement of autophagy in cultured hepatoma cells. J Biol Chem. 1999 Jan 8;274(2):1058–1065. doi: 10.1074/jbc.274.2.1058. [DOI] [PubMed] [Google Scholar]
  115. Shintani T., Mizushima N., Ogawa Y., Matsuura A., Noda T., Ohsumi Y. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J. 1999 Oct 1;18(19):5234–5241. doi: 10.1093/emboj/18.19.5234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Straus D. S., Burke E. J., Marten N. W. Induction of insulin-like growth factor binding protein-1 gene expression in liver of protein-restricted rats and in rat hepatoma cells limited for a single amino acid. Endocrinology. 1993 Mar;132(3):1090–1100. doi: 10.1210/endo.132.3.7679969. [DOI] [PubMed] [Google Scholar]
  117. Straus D. S. Nutritional regulation of hormones and growth factors that control mammalian growth. FASEB J. 1994 Jan;8(1):6–12. doi: 10.1096/fasebj.8.1.8299891. [DOI] [PubMed] [Google Scholar]
  118. Straus D. S., Takemoto C. D. Effect of dietary protein deprivation on insulin-like growth factor (IGF)-I and -II, IGF binding protein-2, and serum albumin gene expression in rat. Endocrinology. 1990 Oct;127(4):1849–1860. doi: 10.1210/endo-127-4-1849. [DOI] [PubMed] [Google Scholar]
  119. Struhl K. Promoters, activator proteins, and the mechanism of transcriptional initiation in yeast. Cell. 1987 May 8;49(3):295–297. doi: 10.1016/0092-8674(87)90277-7. [DOI] [PubMed] [Google Scholar]
  120. Su T. S., Beaudet A. L., O'Brien W. E. Increased translatable messenger ribonucleic acid for argininosuccinate synthetase in canavanine-resistant human cells. Biochemistry. 1981 May 12;20(10):2956–2960. doi: 10.1021/bi00513a037. [DOI] [PubMed] [Google Scholar]
  121. Svanberg E., Jefferson L. S., Lundholm K., Kimball S. R. Postprandial stimulation of muscle protein synthesis is independent of changes in insulin. Am J Physiol. 1997 May;272(5 Pt 1):E841–E847. doi: 10.1152/ajpendo.1997.272.5.E841. [DOI] [PubMed] [Google Scholar]
  122. Sze J. Y., Woontner M., Jaehning J. A., Kohlhaw G. B. In vitro transcriptional activation by a metabolic intermediate: activation by Leu3 depends on alpha-isopropylmalate. Science. 1992 Nov 13;258(5085):1143–1145. doi: 10.1126/science.1439822. [DOI] [PubMed] [Google Scholar]
  123. Thissen J. P., Pucilowska J. B., Underwood L. E. Differential regulation of insulin-like growth factor I (IGF-I) and IGF binding protein-1 messenger ribonucleic acids by amino acid availability and growth hormone in rat hepatocyte primary culture. Endocrinology. 1994 Mar;134(3):1570–1576. doi: 10.1210/endo.134.3.7509741. [DOI] [PubMed] [Google Scholar]
  124. Towle H. C. Metabolic regulation of gene transcription in mammals. J Biol Chem. 1995 Oct 6;270(40):23235–23238. doi: 10.1074/jbc.270.40.23235. [DOI] [PubMed] [Google Scholar]
  125. Vance M. L., Hartman M. L., Thorner M. O. Growth hormone and nutrition. Horm Res. 1992;38 (Suppl 1):85–88. doi: 10.1159/000182577. [DOI] [PubMed] [Google Scholar]
  126. Varga J., Li L., Mauviel A., Jeffrey J., Jimenez S. A. L-Tryptophan in supraphysiologic concentrations stimulates collagenase gene expression in human skin fibroblasts. Lab Invest. 1994 Feb;70(2):183–191. [PubMed] [Google Scholar]
  127. Varga J., Yufit T., Brown R. R. Inhibition of collagenase and stromelysin gene expression by interferon-gamma in human dermal fibroblasts is mediated in part via induction of tryptophan degradation. J Clin Invest. 1995 Jul;96(1):475–481. doi: 10.1172/JCI118058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Varga J., Yufit T., Hitraya E., Brown R. R. Control of extracellular matrix degradation by interferon-gamma. The tryptophan connection. Adv Exp Med Biol. 1996;398:143–148. doi: 10.1007/978-1-4613-0381-7_23. [DOI] [PubMed] [Google Scholar]
  129. Vaulont S., Kahn A. Transcriptional control of metabolic regulation genes by carbohydrates. FASEB J. 1994 Jan;8(1):28–35. doi: 10.1096/fasebj.8.1.8299888. [DOI] [PubMed] [Google Scholar]
  130. Volpi E., Lucidi P., Cruciani G., Monacchia F., Reboldi G., Brunetti P., Bolli G. B., De Feo P. Contribution of amino acids and insulin to protein anabolism during meal absorption. Diabetes. 1996 Sep;45(9):1245–1252. doi: 10.2337/diab.45.9.1245. [DOI] [PubMed] [Google Scholar]
  131. Wang X. Z., Kuroda M., Sok J., Batchvarova N., Kimmel R., Chung P., Zinszner H., Ron D. Identification of novel stress-induced genes downstream of chop. EMBO J. 1998 Jul 1;17(13):3619–3630. doi: 10.1093/emboj/17.13.3619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Wang X. Z., Lawson B., Brewer J. W., Zinszner H., Sanjay A., Mi L. J., Boorstein R., Kreibich G., Hendershot L. M., Ron D. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol Cell Biol. 1996 Aug;16(8):4273–4280. doi: 10.1128/mcb.16.8.4273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Wang X., Campbell L. E., Miller C. M., Proud C. G. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J. 1998 Aug 15;334(Pt 1):261–267. doi: 10.1042/bj3340261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Waterlow J. C., Jackson A. A. Nutrition and protein turnover in man. Br Med Bull. 1981 Jan;37(1):5–10. doi: 10.1093/oxfordjournals.bmb.a071676. [DOI] [PubMed] [Google Scholar]
  135. Watford M. A 'swell' way to regulate metabolism. Trends Biochem Sci. 1990 Sep;15(9):329–330. doi: 10.1016/0968-0004(90)90065-j. [DOI] [PubMed] [Google Scholar]
  136. Wolfe R. R., Jahoor F., Hartl W. H. Protein and amino acid metabolism after injury. Diabetes Metab Rev. 1989 Mar;5(2):149–164. doi: 10.1002/dmr.5610050205. [DOI] [PubMed] [Google Scholar]
  137. Xu G., Kwon G., Marshall C. A., Lin T. A., Lawrence J. C., Jr, McDaniel M. L. Branched-chain amino acids are essential in the regulation of PHAS-I and p70 S6 kinase by pancreatic beta-cells. A possible role in protein translation and mitogenic signaling. J Biol Chem. 1998 Oct 23;273(43):28178–28184. doi: 10.1074/jbc.273.43.28178. [DOI] [PubMed] [Google Scholar]
  138. Young V. R. Human amino acid requirements: counterpoint to Millward and the importance of tentative revised estimates. J Nutr. 1998 Sep;128(9):1570–1573. doi: 10.1093/jn/128.9.1570. [DOI] [PubMed] [Google Scholar]
  139. Zhang Z., Sniderman A. D., Kalant D., Vu H., Monge J. C., Tao Y., Cianflone K. The role of amino acids in ApoB100 synthesis and catabolism in human HepG2 cells. J Biol Chem. 1993 Dec 25;268(36):26920–26926. [PubMed] [Google Scholar]
  140. Ziegler T. R., Gatzen C., Wilmore D. W. Strategies for attenuating protein-catabolic responses in the critically ill. Annu Rev Med. 1994;45:459–480. doi: 10.1146/annurev.med.45.1.459. [DOI] [PubMed] [Google Scholar]
  141. Zimmerman R. A., Scott H. M. Interrelationship of plasma amino acid levels and weight gain in the chick as influenced by suboptimal and superoptimal dietary concentrations of single amino acids. J Nutr. 1965 Sep;87(1):13–18. doi: 10.1093/jn/87.1.13. [DOI] [PubMed] [Google Scholar]
  142. von Manteuffel S. R., Dennis P. B., Pullen N., Gingras A. C., Sonenberg N., Thomas G. The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6k. Mol Cell Biol. 1997 Sep;17(9):5426–5436. doi: 10.1128/mcb.17.9.5426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. von Manteuffel S. R., Gingras A. C., Ming X. F., Sonenberg N., Thomas G. 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4076–4080. doi: 10.1073/pnas.93.9.4076. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES