Abstract
Redox modulation participates in the regulation of intracellular free calcium concentration ([Ca(2+)](i)) in several cell types. In thyroid cells, including FRTL-5 cells, changes in [Ca(2+)](i) regulate several important functions, including the production of H(2)O(2) (hydrogen peroxide). As H(2)O(2) is of crucial importance for the production of thyroid hormones, we investigated the effects of H(2)O(2) on [Ca(2+)](i) in thyroid FRTL-5 cells. H(2)O(2) itself did not modulate basal [Ca(2+)](i). However, H(2)O(2) attenuated store-operated calcium entry evoked by thapsigargin, both in a sodium-containing buffer and in a sodium-free buffer. The effect of H(2)O(2) was abrogated by the reducing agent beta-mercaptoethanol. H(2)O(2) also attenuated the thapsigargin-evoked entry of barium and manganese. The effect of H(2)O(2) was, at least in part, mediated by activation of protein kinase C (PKC), as H(2)O(2) enhanced the binding of [(3)H]phorbol 12,13-dibutyrate. H(2)O(2) also stimulated the translocation of the isoenzyme PKCepsilon from the cytosolic fraction to the particulate fraction. Furthermore, H(2)O(2) did not attenuate store-operated calcium entry in cells treated with staurosporine or calphostin C, or in cells with down-regulated PKC. H(2)O(2) depolarized the membrane potential in bisoxonol-loaded cells and when patch-clamp in the whole-cell mode was used. The depolarization was attenuated in cells with down-regulated PKC. This depolarization, at least in part, explained the H(2)O(2)-evoked inhibition of calcium entry. In addition, H(2)O(2) enhanced the extrusion of calcium from cells stimulated with thapsigargin and this effect was abolished in cells with down-regulated PKC and after treatment of the cells with the reducing agent beta-mercaptoethanol. In conclusion H(2)O(2) attenuates an increase in [Ca(2+)](i). As H(2)O(2) is produced in thyroid cells in a calcium-dependent manner, our results suggest that H(2)O(2) may participate in the regulation of [Ca(2+)](i) in these cells via a negative-feedback mechanism involving activation of PKC.
Full Text
The Full Text of this article is available as a PDF (221.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambesi-Impiombato F. S., Parks L. A., Coon H. G. Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3455–3459. doi: 10.1073/pnas.77.6.3455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beresewicz A., Horackova M. Alterations in electrical and contractile behavior of isolated cardiomyocytes by hydrogen peroxide: possible ionic mechanisms. J Mol Cell Cardiol. 1991 Aug;23(8):899–918. doi: 10.1016/0022-2828(91)90133-7. [DOI] [PubMed] [Google Scholar]
- Björkman U., Ekholm R. Hydrogen peroxide degradation and glutathione peroxidase activity in cultures of thyroid cells. Mol Cell Endocrinol. 1995 Apr 28;111(1):99–107. doi: 10.1016/0303-7207(95)03552-i. [DOI] [PubMed] [Google Scholar]
- Björkman U., Ekholm R. Hydrogen peroxide generation and its regulation in FRTL-5 and porcine thyroid cells. Endocrinology. 1992 Jan;130(1):393–399. doi: 10.1210/endo.130.1.1309340. [DOI] [PubMed] [Google Scholar]
- Björkman U., Ekholm R. Hydrogen peroxide generation and its regulation in FRTL-5 and porcine thyroid cells. Endocrinology. 1992 Jan;130(1):393–399. doi: 10.1210/endo.130.1.1309340. [DOI] [PubMed] [Google Scholar]
- Brynolf K. An enzymatic method for the determination of dCMP in picomol amounts. Anal Biochem. 1976 May 7;72:238–247. doi: 10.1016/0003-2697(76)90526-1. [DOI] [PubMed] [Google Scholar]
- Burch R. M., Luini A., Mais D. E., Corda D., Vanderhoek J. Y., Kohn L. D., Axelrod J. Alpha 1-adrenergic stimulation of arachidonic acid release and metabolism in a rat thyroid cell line. Mediation of cell replication by prostaglandin E2. J Biol Chem. 1986 Aug 25;261(24):11236–11241. [PubMed] [Google Scholar]
- Chen G., Pekary A. E., Sugawara M., Hershman J. M. Effect of exogenous hydrogen peroxide on iodide transport and iodine organification in FRTL-5 rat thyroid cells. Acta Endocrinol (Copenh) 1993 Jul;129(1):89–96. doi: 10.1530/acta.0.1290089. [DOI] [PubMed] [Google Scholar]
- Corda D., Marcocci C., Kohn L. D., Axelrod J., Luini A. Association of the changes in cytosolic Ca2+ and iodide efflux induced by thyrotropin and by the stimulation of alpha 1-adrenergic receptors in cultured rat thyroid cells. J Biol Chem. 1985 Aug 5;260(16):9230–9236. [PubMed] [Google Scholar]
- Dreher D., Junod A. F. Differential effects of superoxide, hydrogen peroxide, and hydroxyl radical on intracellular calcium in human endothelial cells. J Cell Physiol. 1995 Jan;162(1):147–153. doi: 10.1002/jcp.1041620118. [DOI] [PubMed] [Google Scholar]
- Dumont J. E., Maenhaut C., Pirson I., Baptist M., Roger P. P. Growth factors controlling the thyroid gland. Baillieres Clin Endocrinol Metab. 1991 Dec;5(4):727–754. doi: 10.1016/s0950-351x(10)80012-6. [DOI] [PubMed] [Google Scholar]
- Fukayama H., Murakami S., Nasu M., Sugawara M. Hydrogen peroxide inhibits iodide uptake and iodine organification in cultured porcine thyroid follicles. Thyroid. 1991 Summer;1(3):267–271. doi: 10.1089/thy.1991.1.267. [DOI] [PubMed] [Google Scholar]
- Gopalakrishna R., Anderson W. B. Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6758–6762. doi: 10.1073/pnas.86.17.6758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Hoyal C. R., Thomas A. P., Forman H. J. Hydroperoxide-induced increases in intracellular calcium due to annexin VI translocation and inactivation of plasma membrane Ca2+-ATPase. J Biol Chem. 1996 Nov 15;271(46):29205–29210. doi: 10.1074/jbc.271.46.29205. [DOI] [PubMed] [Google Scholar]
- Islam M. S., Rorsman P., Berggren P. O. Ca(2+)-induced Ca2+ release in insulin-secreting cells. FEBS Lett. 1992 Jan 27;296(3):287–291. doi: 10.1016/0014-5793(92)80306-2. [DOI] [PubMed] [Google Scholar]
- Jones D. P., Thor H., Smith M. T., Jewell S. A., Orrenius S. Inhibition of ATP-dependent microsomal Ca2+ sequestration during oxidative stress and its prevention by glutathione. J Biol Chem. 1983 May 25;258(10):6390–6393. [PubMed] [Google Scholar]
- Kass G. E., Duddy S. K., Orrenius S. Activation of hepatocyte protein kinase C by redox-cycling quinones. Biochem J. 1989 Jun 1;260(2):499–507. doi: 10.1042/bj2600499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwan C. Y., Putney J. W., Jr Uptake and intracellular sequestration of divalent cations in resting and methacholine-stimulated mouse lacrimal acinar cells. Dissociation by Sr2+ and Ba2+ of agonist-stimulated divalent cation entry from the refilling of the agonist-sensitive intracellular pool. J Biol Chem. 1990 Jan 15;265(2):678–684. [PubMed] [Google Scholar]
- Larsson R., Cerutti P. Translocation and enhancement of phosphotransferase activity of protein kinase C following exposure in mouse epidermal cells to oxidants. Cancer Res. 1989 Oct 15;49(20):5627–5632. [PubMed] [Google Scholar]
- Lippes H. A., Spaulding S. W. Peroxide formation and glucose oxidation in calf thyroid slices: regulation by protein kinase-C and cytosolic free calcium. Endocrinology. 1986 Apr;118(4):1306–1311. doi: 10.1210/endo-118-4-1306. [DOI] [PubMed] [Google Scholar]
- Liu B. F., Xu X., Fridman R., Muallem S., Kuo T. H. Consequences of functional expression of the plasma membrane Ca2+ pump isoform 1a. J Biol Chem. 1996 Mar 8;271(10):5536–5544. doi: 10.1074/jbc.271.10.5536. [DOI] [PubMed] [Google Scholar]
- Maechler P., Jornot L., Wollheim C. B. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem. 1999 Sep 24;274(39):27905–27913. doi: 10.1074/jbc.274.39.27905. [DOI] [PubMed] [Google Scholar]
- Menshikova E. V., Ritov V. B., Shvedova A. A., Elsayed N., Karol M. H., Kagan V. E. Pulmonary microsomes contain a Ca(2+)-transport system sensitive to oxidative stress. Biochim Biophys Acta. 1995 Mar 14;1228(2-3):165–174. doi: 10.1016/0005-2728(94)00166-3. [DOI] [PubMed] [Google Scholar]
- Missiaen L., Taylor C. W., Berridge M. J. Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores. Nature. 1991 Jul 18;352(6332):241–244. doi: 10.1038/352241a0. [DOI] [PubMed] [Google Scholar]
- Montero M., Garcia-Sancho J., Alvarez J. Inhibition of the calcium store-operated calcium entry pathway by chemotactic peptide and by phorbol ester develops gradually and independently along differentiation of HL60 cells. J Biol Chem. 1993 Dec 25;268(36):26911–26919. [PubMed] [Google Scholar]
- Nelson E. J., Hinkle P. M. Thyrotropin-releasing hormone activates Ca2+ efflux. Evidence suggesting that a plasma membrane Ca2+ pump is an effector for a G-protein-coupled Ca(2+)-mobilizing receptor. J Biol Chem. 1994 Dec 9;269(49):30854–30860. [PubMed] [Google Scholar]
- Nofer J. R., Tepel M., Walter M., Seedorf U., Assmann G., Zidek W. Phosphatidylcholine-specific phospholipase C regulates thapsigargin-induced calcium influx in human lymphocytes. J Biol Chem. 1997 Dec 26;272(52):32861–32868. doi: 10.1074/jbc.272.52.32861. [DOI] [PubMed] [Google Scholar]
- Palumbo E. J., Sweatt J. D., Chen S. J., Klann E. Oxidation-induced persistent activation of protein kinase C in hippocampal homogenates. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1439–1445. doi: 10.1016/0006-291x(92)90463-u. [DOI] [PubMed] [Google Scholar]
- Parekh A. B., Penner R. Activation of store-operated calcium influx at resting InsP3 levels by sensitization of the InsP3 receptor in rat basophilic leukaemia cells. J Physiol. 1995 Dec 1;489(Pt 2):377–382. doi: 10.1113/jphysiol.1995.sp021058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raspé E., Dumont J. E. Control of the dog thyrocyte plasma membrane iodide permeability by the Ca(2+)-phosphatidylinositol and adenosine 3',5'-monophosphate cascades. Endocrinology. 1994 Sep;135(3):986–995. doi: 10.1210/endo.135.3.8070394. [DOI] [PubMed] [Google Scholar]
- Raspé E., Laurent E., Corvilain B., Verjans B., Erneux C., Dumont J. E. Control of the intracellular Ca(2+)-concentration and the inositol phosphate accumulation in dog thyrocyte primary culture: evidence for different kinetics of Ca(2+)-phosphatidylinositol cascade activation and for involvement in the regulation of H2O2 production. J Cell Physiol. 1991 Feb;146(2):242–250. doi: 10.1002/jcp.1041460208. [DOI] [PubMed] [Google Scholar]
- Rink T. J., Montecucco C., Hesketh T. R., Tsien R. Y. Lymphocyte membrane potential assessed with fluorescent probes. Biochim Biophys Acta. 1980;595(1):15–30. doi: 10.1016/0005-2736(80)90243-6. [DOI] [PubMed] [Google Scholar]
- Riou C., Remy C., Rabilloud R., Rousset B., Fonlupt P. H2O2 induces apoptosis of pig thyrocytes in culture. J Endocrinol. 1998 Feb;156(2):315–322. doi: 10.1677/joe.0.1560315. [DOI] [PubMed] [Google Scholar]
- Rooney T. A., Renard D. C., Sass E. J., Thomas A. P. Oscillatory cytosolic calcium waves independent of stimulated inositol 1,4,5-trisphosphate formation in hepatocytes. J Biol Chem. 1991 Jul 5;266(19):12272–12282. [PubMed] [Google Scholar]
- Roychoudhury S., Ghosh S. K., Chakraborti T., Chakraborti S. Role of hydroxyl radical in the oxidant H2O2-mediated Ca2+ release from pulmonary smooth muscle mitochondria. Mol Cell Biochem. 1996 Jun 21;159(2):95–103. doi: 10.1007/BF00420911. [DOI] [PubMed] [Google Scholar]
- Saji M., Ikuyama S., Akamizu T., Kohn L. D. Increases in cytosolic Ca++ down regulate thyrotropin receptor gene expression by a mechanism different from the cAMP signal. Biochem Biophys Res Commun. 1991 Apr 15;176(1):94–101. doi: 10.1016/0006-291x(91)90894-d. [DOI] [PubMed] [Google Scholar]
- Sakamoto T., Repasky W. T., Uchida K., Hirata A., Hirata F. Modulation of cell death pathways to apoptosis and necrosis of H2O2-treated rat thymocytes by lipocortin I. Biochem Biophys Res Commun. 1996 Mar 27;220(3):643–647. doi: 10.1006/bbrc.1996.0457. [DOI] [PubMed] [Google Scholar]
- Schmidt K. N., Traenckner E. B., Meier B., Baeuerle P. A. Induction of oxidative stress by okadaic acid is required for activation of transcription factor NF-kappa B. J Biol Chem. 1995 Nov 10;270(45):27136–27142. doi: 10.1074/jbc.270.45.27136. [DOI] [PubMed] [Google Scholar]
- Sugawara M., Yamaguchi D. T., Lee H. Y., Yanagisawa K., Murakami S., Summer C. N., Johnson D. G., Levin S. R. Hydrogen peroxide inhibits iodide influx and enhances iodide efflux in cultured FRTL-5 rat thyroid cells. Acta Endocrinol (Copenh) 1990 May;122(5):610–616. doi: 10.1530/acta.0.1220610. [DOI] [PubMed] [Google Scholar]
- Takada K., Amino N., Tada H., Miyai K. Relationship between proliferation and cell cycle-dependent Ca2+ influx induced by a combination of thyrotropin and insulin-like growth factor-I in rat thyroid cells. J Clin Invest. 1990 Nov;86(5):1548–1555. doi: 10.1172/JCI114874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tian L., Philp J. A., Shipston M. J. Glucocorticoid block of protein kinase C signalling in mouse pituitary corticotroph AtT20 D16:16 cells. J Physiol. 1999 May 1;516(Pt 3):757–768. doi: 10.1111/j.1469-7793.1999.0757u.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trilivas I., Brown J. H. Increases in intracellular Ca2+ regulate the binding of [3H]phorbol 12,13-dibutyrate to intact 1321N1 astrocytoma cells. J Biol Chem. 1989 Feb 25;264(6):3102–3107. [PubMed] [Google Scholar]
- Tuominen R. K., Hudson P. M., McMillian M. K., Ye H., Stachowiak M. K., Hong J. S. Long-term activation of protein kinase C by angiotensin II in cultured bovine adrenal medullary cells. J Neurochem. 1991 Apr;56(4):1292–1298. doi: 10.1111/j.1471-4159.1991.tb11424.x. [DOI] [PubMed] [Google Scholar]
- Törnquist K., Vainio P., Titievsky A., Dugué B., Tuominen R. Redox modulation of intracellular free calcium concentration in thyroid FRTL-5 cells: evidence for an enhanced extrusion of calcium. Biochem J. 1999 May 1;339(Pt 3):621–628. [PMC free article] [PubMed] [Google Scholar]
- Wang X. D., Kiang J. G., Smallridge R. C. Identification of protein kinase C and its multiple isoforms in FRTL-5 thyroid cells. Thyroid. 1995 Apr;5(2):137–140. doi: 10.1089/thy.1995.5.137. [DOI] [PubMed] [Google Scholar]
- Ward C. A., Giles W. R. Ionic mechanism of the effects of hydrogen peroxide in rat ventricular myocytes. J Physiol. 1997 May 1;500(Pt 3):631–642. doi: 10.1113/jphysiol.1997.sp022048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wartenberg M., Diedershagen H., Hescheler J., Sauer H. Growth stimulation versus induction of cell quiescence by hydrogen peroxide in prostate tumor spheroids is encoded by the duration of the Ca(2+) response. J Biol Chem. 1999 Sep 24;274(39):27759–27767. doi: 10.1074/jbc.274.39.27759. [DOI] [PubMed] [Google Scholar]
- Weiss S. J., Philp N. J., Grollman E. F. Effect of thyrotropin on iodide efflux in FRTL-5 cells mediated by Ca2+. Endocrinology. 1984 Apr;114(4):1108–1113. doi: 10.1210/endo-114-4-1108. [DOI] [PubMed] [Google Scholar]
- Whittemore E. R., Loo D. T., Watt J. A., Cotman C. W. A detailed analysis of hydrogen peroxide-induced cell death in primary neuronal culture. Neuroscience. 1995 Aug;67(4):921–932. doi: 10.1016/0306-4522(95)00108-u. [DOI] [PubMed] [Google Scholar]
- Xu Y., Ware J. A. Selective inhibition of thrombin receptor-mediated Ca2+ entry by protein kinase C beta. J Biol Chem. 1995 Oct 13;270(41):23887–23890. doi: 10.1074/jbc.270.41.23887. [DOI] [PubMed] [Google Scholar]
- Zhang B. X., Zhao H., Loessberg P., Muallem S. Activation of the plasma membrane Ca2+ pump during agonist stimulation of pancreatic acini. J Biol Chem. 1992 Aug 5;267(22):15419–15425. [PubMed] [Google Scholar]