Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Oct 1;351(Pt 1):123–132. doi: 10.1042/0264-6021:3510123

The protein kinase A catalytic subunit Cbeta2: molecular characterization and distribution of the splice variant.

S Thullner 1, F Gesellchen 1, S Wiemann 1, W Pyerin 1, V Kinzel 1, D Bossemeyer 1
PMCID: PMC1221342  PMID: 10998354

Abstract

Cbeta2, a 46 kDa splice variant of the Cbeta isoform, is the largest isoform so far described for catalytic subunits from cAMP-dependent protein kinase in mammals. It differs from Cbeta in the first 15 N-terminal residues which are replaced with a 62-residue domain with no similarity to other known proteins. The Cbeta2 protein was identified in cardiac tissue by MS, microsequencing and C-subunit-isoform-selective antibodies. The Cbeta2 protein has a very low abundance of about 2% of total affinity-purified C subunits from bovine cardiac tissue. This, and the similarity of its biochemical properties to Calpha and Cbeta, are probably some of the reasons why the Cbeta2 protein has escaped detection so far. The abundance of the Cbeta2 protein differs dramatically between tissues, with most protein detected in heart, liver and spleen, and the lowest level in testis. Cbeta2 protein shows kinase activity against synthetic substrates, and is inhibited by the protein kinase inhibitor peptide PKI(5-24). The degree of Cbeta2 removal from tissue extracts by binding to PKI(5-24) depends on the cAMP level, i.e. on the dissociation state of the holoenzyme. Two sites in the protein are phosphorylated: Thr-244 in the activation segment and Ser-385 close to the C-terminus. By affinity purification and immunodetection Cbeta2 was found in cattle, pig, rat, mouse and turkey tissue and in HeLa cells. In the cAMP-insensitive CHO 10260 cell line, which has normal Cbeta but is depleted of Calpha, stable transfection with Cbeta2 restored most of the cAMP-induced morphological changes. Cbeta2 is a ubiquitously expressed protein with characteristic properties of a cAMP-dependent protein kinase catalytic subunit.

Full Text

The Full Text of this article is available as a PDF (327.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beebe S. J., Oyen O., Sandberg M., Frøysa A., Hansson V., Jahnsen T. Molecular cloning of a tissue-specific protein kinase (C gamma) from human testis--representing a third isoform for the catalytic subunit of cAMP-dependent protein kinase. Mol Endocrinol. 1990 Mar;4(3):465–475. doi: 10.1210/mend-4-3-465. [DOI] [PubMed] [Google Scholar]
  2. Cadd G., McKnight G. S. Distinct patterns of cAMP-dependent protein kinase gene expression in mouse brain. Neuron. 1989 Jul;3(1):71–79. doi: 10.1016/0896-6273(89)90116-5. [DOI] [PubMed] [Google Scholar]
  3. Cauthron R. D., Carter K. B., Liauw S., Steinberg R. A. Physiological phosphorylation of protein kinase A at Thr-197 is by a protein kinase A kinase. Mol Cell Biol. 1998 Mar;18(3):1416–1423. doi: 10.1128/mcb.18.3.1416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen C. A., Okayama H. Calcium phosphate-mediated gene transfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. Biotechniques. 1988 Jul-Aug;6(7):632–638. [PubMed] [Google Scholar]
  5. Cheng X., Ma Y., Moore M., Hemmings B. A., Taylor S. S. Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9849–9854. doi: 10.1073/pnas.95.17.9849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clegg C. H., Ran W., Uhler M. D., McKnight G. S. A mutation in the catalytic subunit of protein kinase A prevents myristylation but does not inhibit biological activity. J Biol Chem. 1989 Nov 25;264(33):20140–20146. [PubMed] [Google Scholar]
  7. Engh R. A., Girod A., Kinzel V., Huber R., Bossemeyer D. Crystal structures of catalytic subunit of cAMP-dependent protein kinase in complex with isoquinolinesulfonyl protein kinase inhibitors H7, H8, and H89. Structural implications for selectivity. J Biol Chem. 1996 Oct 18;271(42):26157–26164. doi: 10.1074/jbc.271.42.26157. [DOI] [PubMed] [Google Scholar]
  8. Gamm D. M., Baude E. J., Uhler M. D. The major catalytic subunit isoforms of cAMP-dependent protein kinase have distinct biochemical properties in vitro and in vivo. J Biol Chem. 1996 Jun 28;271(26):15736–15742. doi: 10.1074/jbc.271.26.15736. [DOI] [PubMed] [Google Scholar]
  9. Gangal M., Clifford T., Deich J., Cheng X., Taylor S. S., Johnson D. A. Mobilization of the A-kinase N-myristate through an isoform-specific intermolecular switch. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12394–12399. doi: 10.1073/pnas.96.22.12394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Geahlen R. L., Harrison M. L. Detection of a novel lymphocyte protein-tyrosine kinase by renaturation in polyacrylamide gels. Biochem Biophys Res Commun. 1986 Jan 29;134(2):963–969. doi: 10.1016/s0006-291x(86)80514-9. [DOI] [PubMed] [Google Scholar]
  11. Gibbs C. S., Knighton D. R., Sowadski J. M., Taylor S. S., Zoller M. J. Systematic mutational analysis of cAMP-dependent protein kinase identifies unregulated catalytic subunits and defines regions important for the recognition of the regulatory subunit. J Biol Chem. 1992 Mar 5;267(7):4806–4814. [PubMed] [Google Scholar]
  12. Girod A., Kinzel V., Bossemeyer D. In vivo activation of recombinant cAPK catalytic subunit active site mutants by coexpression of the wild-type enzyme, evidence for intermolecular cotranslational phosphorylation. FEBS Lett. 1996 Aug 5;391(1-2):121–125. doi: 10.1016/0014-5793(96)00717-x. [DOI] [PubMed] [Google Scholar]
  13. Glass D. B., Cheng H. C., Mende-Mueller L., Reed J., Walsh D. A. Primary structural determinants essential for potent inhibition of cAMP-dependent protein kinase by inhibitory peptides corresponding to the active portion of the heat-stable inhibitor protein. J Biol Chem. 1989 May 25;264(15):8802–8810. [PubMed] [Google Scholar]
  14. Gottesman M. M., LeCam A., Bukowski M., Pastan I. Isolation of multiple classes of mutants of CHO cells resistant to cyclic AMP. Somatic Cell Genet. 1980 Jan;6(1):45–61. doi: 10.1007/BF01538695. [DOI] [PubMed] [Google Scholar]
  15. Guthrie C. R., Skâlhegg B. S., McKnight G. S. Two novel brain-specific splice variants of the murine Cbeta gene of cAMP-dependent protein kinase. J Biol Chem. 1997 Nov 21;272(47):29560–29565. doi: 10.1074/jbc.272.47.29560. [DOI] [PubMed] [Google Scholar]
  16. Han J. D., Rubin C. S. Regulation of cytoskeleton organization and paxillin dephosphorylation by cAMP. Studies on murine Y1 adrenal cells. J Biol Chem. 1996 Nov 15;271(46):29211–29215. doi: 10.1074/jbc.271.46.29211. [DOI] [PubMed] [Google Scholar]
  17. Hanks S. K., Quinn A. M. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol. 1991;200:38–62. doi: 10.1016/0076-6879(91)00126-h. [DOI] [PubMed] [Google Scholar]
  18. Harootunian A. T., Adams S. R., Wen W., Meinkoth J. L., Taylor S. S., Tsien R. Y. Movement of the free catalytic subunit of cAMP-dependent protein kinase into and out of the nucleus can be explained by diffusion. Mol Biol Cell. 1993 Oct;4(10):993–1002. doi: 10.1091/mbc.4.10.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Herberg F. W., Taylor S. S. Physiological inhibitors of the catalytic subunit of cAMP-dependent protein kinase: effect of MgATP on protein-protein interactions. Biochemistry. 1993 Dec 21;32(50):14015–14022. doi: 10.1021/bi00213a035. [DOI] [PubMed] [Google Scholar]
  20. Howard P., Day K. H., Kim K. E., Richardson J., Thomas J., Abraham I., Fleischmann R. D., Gottesman M. M., Maurer R. A. Decreased catalytic subunit mRNA levels and altered catalytic subunit mRNA structure in a cAMP-resistant Chinese hamster ovary cell line. J Biol Chem. 1991 Jun 5;266(16):10189–10195. [PubMed] [Google Scholar]
  21. Huang Y. Y., Kandel E. R., Varshavsky L., Brandon E. P., Qi M., Idzerda R. L., McKnight G. S., Bourtchouladze R. A genetic test of the effects of mutations in PKA on mossy fiber LTP and its relation to spatial and contextual learning. Cell. 1995 Dec 29;83(7):1211–1222. doi: 10.1016/0092-8674(95)90146-9. [DOI] [PubMed] [Google Scholar]
  22. Jedrzejewski P. T., Girod A., Tholey A., König N., Thullner S., Kinzel V., Bossemeyer D. A conserved deamidation site at Asn 2 in the catalytic subunit of mammalian cAMP-dependent protein kinase detected by capillary LC-MS and tandem mass spectrometry. Protein Sci. 1998 Feb;7(2):457–469. doi: 10.1002/pro.5560070227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jedrzejewski P. T., Lehmann W. D. Detection of modified peptides in enzymatic digests by capillary liquid chromatography/electrospray mass spectrometry and a programmable skimmer CID acquisition routine. Anal Chem. 1997 Feb 1;69(3):294–301. doi: 10.1021/ac9606618. [DOI] [PubMed] [Google Scholar]
  24. Kinzel V., Hotz A., König N., Gagelmann M., Pyerin W., Reed J., Kübler D., Hofmann F., Obst C., Gensheimer H. P. Chromatographic separation of two heterogeneous forms of the catalytic subunit of cyclic AMP-dependent protein kinase holoenzyme type I and type II from striated muscle of different mammalian species. Arch Biochem Biophys. 1987 Mar;253(2):341–349. doi: 10.1016/0003-9861(87)90187-1. [DOI] [PubMed] [Google Scholar]
  25. Kinzel V., Kübler D. Single step purification of the catalytic subunit(s) of cyclic 3', 5'-adenosine monophosphate-dependent protein kinase(s) from rat muscle. Biochem Biophys Res Commun. 1976 Jul 12;71(1):257–264. doi: 10.1016/0006-291x(76)90276-x. [DOI] [PubMed] [Google Scholar]
  26. Montminy M. Transcriptional regulation by cyclic AMP. Annu Rev Biochem. 1997;66:807–822. doi: 10.1146/annurev.biochem.66.1.807. [DOI] [PubMed] [Google Scholar]
  27. Murtaugh M. P., Steiner A. L., Davies P. J. Localization of the catalytic subunit of cyclic AMP-dependent. Protein kinase in cultured cells using a specific antibody. J Cell Biol. 1982 Oct;95(1):64–72. doi: 10.1083/jcb.95.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nelson N. C., Taylor S. S. Differential labeling and identification of the cysteine-containing tryptic peptides of catalytic subunit from porcine heart cAMP-dependent protein kinase. J Biol Chem. 1981 Apr 25;256(8):3743–3750. [PubMed] [Google Scholar]
  29. Nigg E. A., Hilz H., Eppenberger H. M., Dutly F. Rapid and reversible translocation of the catalytic subunit of cAMP-dependent protein kinase type II from the Golgi complex to the nucleus. EMBO J. 1985 Nov;4(11):2801–2806. doi: 10.1002/j.1460-2075.1985.tb04006.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Olsen S. R., Uhler M. D. Affinity purification of the C alpha and C beta isoforms of the catalytic subunit of cAMP-dependent protein kinase. J Biol Chem. 1989 Nov 5;264(31):18662–18666. [PubMed] [Google Scholar]
  31. Qi M., Zhuo M., Skålhegg B. S., Brandon E. P., Kandel E. R., McKnight G. S., Idzerda R. L. Impaired hippocampal plasticity in mice lacking the Cbeta1 catalytic subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1571–1576. doi: 10.1073/pnas.93.4.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Razani B., Rubin C. S., Lisanti M. P. Regulation of cAMP-mediated signal transduction via interaction of caveolins with the catalytic subunit of protein kinase A. J Biol Chem. 1999 Sep 10;274(37):26353–26360. doi: 10.1074/jbc.274.37.26353. [DOI] [PubMed] [Google Scholar]
  33. Roger P. P., Rickaert F., Huez G., Authelet M., Hofmann F., Dumont J. E. Microinjection of catalytic subunit of cyclic AMP-dependent protein kinase triggers acute morphological changes in thyroid epithelial cells. FEBS Lett. 1988 May 23;232(2):409–413. doi: 10.1016/0014-5793(88)80781-6. [DOI] [PubMed] [Google Scholar]
  34. Shoji S., Ericsson L. H., Walsh K. A., Fischer E. H., Titani K. Amino acid sequence of the catalytic subunit of bovine type II adenosine cyclic 3',5'-phosphate dependent protein kinase. Biochemistry. 1983 Jul 19;22(15):3702–3709. doi: 10.1021/bi00284a025. [DOI] [PubMed] [Google Scholar]
  35. Shoji S., Hayashi M., Funakoshi T., Kubota Y. Rapid identification of NH2-terminal myristyl peptides by reversed-phase high-performance liquid chromatography. J Chromatogr. 1986 Mar 28;356(1):179–185. doi: 10.1016/s0021-9673(00)91477-8. [DOI] [PubMed] [Google Scholar]
  36. Shoji S., Parmelee D. C., Wade R. D., Kumar S., Ericsson L. H., Walsh K. A., Neurath H., Long G. L., Demaille J. G., Fischer E. H. Complete amino acid sequence of the catalytic subunit of bovine cardiac muscle cyclic AMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1981 Feb;78(2):848–851. doi: 10.1073/pnas.78.2.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shoji S., Titani K., Demaille J. G., Fischer E. H. Sequence of two phosphorylated sites in the catalytic subunit of bovine cardiac muscle adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1979 Jul 25;254(14):6211–6214. [PubMed] [Google Scholar]
  38. Showers M. O., Maurer R. A. A cloned bovine cDNA encodes an alternate form of the catalytic subunit of cAMP-dependent protein kinase. J Biol Chem. 1986 Dec 15;261(35):16288–16291. [PubMed] [Google Scholar]
  39. Shuntoh H., Sakamoto N., Matsuyama S., Saitoh M., Tanaka C. Molecular structure of the C beta catalytic subunit of rat cAMP-dependent protein kinase and differential expression of C alpha and C beta isoforms in rat tissues and cultured cells. Biochim Biophys Acta. 1992 Jun 15;1131(2):175–180. doi: 10.1016/0167-4781(92)90073-9. [DOI] [PubMed] [Google Scholar]
  40. Silverman L., Resh M. D. Lysine residues form an integral component of a novel NH2-terminal membrane targeting motif for myristylated pp60v-src. J Cell Biol. 1992 Oct;119(2):415–425. doi: 10.1083/jcb.119.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Singh T. J., Roth C., Gottesman M. M., Pastan I. H. Characterization of cyclic AMP-resistant Chinese hamster ovary cell mutants lacking type I protein kinase. J Biol Chem. 1981 Jan 25;256(2):926–932. [PubMed] [Google Scholar]
  42. Slice L. W., Taylor S. S. Expression of the catalytic subunit of cAMP-dependent protein kinase in Escherichia coli. J Biol Chem. 1989 Dec 15;264(35):20940–20946. [PubMed] [Google Scholar]
  43. Steinberg R. A., Cauthron R. D., Symcox M. M., Shuntoh H. Autoactivation of catalytic (C alpha) subunit of cyclic AMP-dependent protein kinase by phosphorylation of threonine 197. Mol Cell Biol. 1993 Apr;13(4):2332–2341. doi: 10.1128/mcb.13.4.2332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Thomis D. C., Floyd-Smith G., Samuel C. E. Mechanism of interferon action. cDNA structure and regulation of a novel splice-site variant of the catalytic subunit of human protein kinase A from interferon-treated human cells. J Biol Chem. 1992 May 25;267(15):10723–10728. [PubMed] [Google Scholar]
  45. Tsugawa M., Asakawa H., Miyagawa J., Katsura H., Komatsu R., Iida S., Fujii H., Gomi M., Moriwaki K., Tarui S. Rounding of cultured human carcinoid tumor cells by forskolin. Anticancer Res. 1990 Jan-Feb;10(1):63–66. [PubMed] [Google Scholar]
  46. Uhler M. D., Chrivia J. C., McKnight G. S. Evidence for a second isoform of the catalytic subunit of cAMP-dependent protein kinase. J Biol Chem. 1986 Nov 25;261(33):15360–15363. [PubMed] [Google Scholar]
  47. Wiemann S., Kinzel V., Pyerin W. Cloning of the C alpha catalytic subunit of the bovine cAMP-dependent protein kinase. Biochim Biophys Acta. 1992 Nov 15;1171(1):93–96. doi: 10.1016/0167-4781(92)90144-o. [DOI] [PubMed] [Google Scholar]
  48. Wiemann S., Kinzel V., Pyerin W. Isoform C beta 2, an unusual form of the bovine catalytic subunit of cAMP-dependent protein kinase. J Biol Chem. 1991 Mar 15;266(8):5140–5146. [PubMed] [Google Scholar]
  49. Wiemann S., Steuer B., Alonso A., Kinzel V., Pyerin W. Promoter of the gene encoding the bovine catalytic subunit of cAMP-dependent protein kinase isoform C beta 2. Biochim Biophys Acta. 1996 Dec 11;1309(3):211–220. doi: 10.1016/s0167-4781(96)00175-3. [DOI] [PubMed] [Google Scholar]
  50. Yonemoto W., McGlone M. L., Grant B., Taylor S. S. Autophosphorylation of the catalytic subunit of cAMP-dependent protein kinase in Escherichia coli. Protein Eng. 1997 Aug;10(8):915–925. doi: 10.1093/protein/10.8.915. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES